معرفی شرکت ها


emgraph-1.0.0rc1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python library for knowledge graph representation learning (graph embedding)
ویژگی مقدار
سیستم عامل -
نام فایل emgraph-1.0.0rc1
نام emgraph
نسخه کتابخانه 1.0.0rc1
نگهدارنده ['Soran Ghaderi']
ایمیل نگهدارنده ['soran.gdr.cd@gmail.com']
نویسنده Soran Ghaderi
ایمیل نویسنده soran.gdr.cd@gmail.com
آدرس صفحه اصلی https://bi-graph.github.io/Emgraph
آدرس اینترنتی https://pypi.org/project/emgraph/
مجوز BSD
<h1><b>Emgraph</b></h1> <div> [//]: # (<a href="https://badge.fury.io/py/emgraph"><img src="https://badge.fury.io/py/emgraph.svg" alt="PyPI version" height="18"></a>) [//]: # (<a href="https://www.codacy.com/gh/bi-graph/emgraph/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=bi-graph/emgraph&amp;utm_campaign=Badge_Grade"><img src="https://app.codacy.com/project/badge/Grade/e320ed8c06a3466aa9711a138085b9d2" alt="PyPI version" height="18"></a>) [//]: # (<img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/emgraph">) [comment]: <> (<img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dw/emgraph">) [comment]: <> (<img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/emgraph">) [comment]: <> (<img alt="GitHub search hit counter" src="https://img.shields.io/github/search/bi-graph/emgraph/hit">) [comment]: <> (<img alt="GitHub search hit counter" src="https://img.shields.io/github/search/bi-graph/emgraph/goto">) [comment]: <> (<img alt="PyPI - Implementation" src="https://img.shields.io/pypi/implementation/emgraph">) [comment]: <> (<img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/m/bi-graph/emgraph">) [comment]: <> (<img alt="GitHub last commit" src="https://img.shields.io/github/last-commit/bi-graph/emgraph">) <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/bi-graph/emgraph?style=social"> </div> <p><b>Emgraph</b> is a Python toolkit for graph embedding.</p> [//]: # (<ul>) [//]: # ( <li><b>Bug reports:</b> https://github.com/bi-graph/emgraph/issues</li>) [//]: # (</ul>) [//]: # (> Node based similarities and Katz has been implemented. you can find algorithms in emgraph module. Algorithms implemented so far:) <div align="center"> <table> <caption><b>Algorithms table</b></caption> <tr> <td><b>Number</b></td> <td align="center"><b>Algorithm</b></td> </tr> <tr> <td align="center">1</td> <td><code><b>TransE</b></code></td> </tr> <tr> <td align="center">2</td> <td><code><b>ComplEx</b></code></td> </tr> <tr> <td align="center">3</td> <td><code><b>HolE</b></code></td> </tr> <tr> <td align="center">4</td> <td><code><b>DistMult</b></code></td> </tr> <tr> <td align="center">5</td> <td><code><b>ConvE</b></code></td> </tr> <tr> <td align="center">6</td> <td><code><b>ConvKB</b></code></td> </tr> <tr> <td align="center">7</td> <td><code><b>RandomBaseline</b></code></td> </tr> </table> </div> <div> <h2>Installation</h2> <p>Install the latest version of <b>Emgraph</b>:</p> <pre>$ pip install emgraph</pre> </div> <div> <h2>Documentation</h2> <p>Soon</p> [//]: # (<p> <a href="https://emgraph.readthedocs.io/en/latest/index.html">https://emgraph.readthedocs.io/en/latest/</a></p>) </div> <h2>Simple example</h2> <p>Embedding wordnet11 graph using <code><b>TransE</b></code> model:</p> ```python from sklearn.metrics import brier_score_loss, log_loss from scipy.special import expit from emgraph.datasets import BaseDataset, DatasetType from emgraph.models import TransE def train_transe(): X = BaseDataset.load_dataset(DatasetType.WN11) model = TransE(batches_count=64, seed=0, epochs=20, k=100, eta=20, optimizer='adam', optimizer_params={'lr': 0.0001}, loss='pairwise', verbose=True, large_graphs=False) model.fit(X['train']) scores = model.predict(X['test']) print("Scores: ", scores) print("Brier score loss:", brier_score_loss(X['test_labels'], expit(scores))) # Executing the function if __name__ == '__main__': train_transe() ``` <p>Evaluating <code><b>ComplEx</b></code> model after training:<br> ```python import numpy as np from emgraph.datasets import BaseDataset, DatasetType from emgraph.models import ComplEx from emgraph.evaluation import evaluate_performance def complex_performance(): X = BaseDataset.load_dataset(DatasetType.WN18) model = ComplEx(batches_count=10, seed=0, epochs=20, k=150, eta=1, loss='nll', optimizer='adam') model.fit(np.concatenate((X['train'], X['valid']))) filter_triples = np.concatenate((X['train'], X['valid'], X['test'])) ranks = evaluate_performance(X['test'][:5], model=model, filter_triples=filter_triples, corrupt_side='s+o', use_default_protocol=False) return ranks # Executing the function if __name__ == '__main__': ranks = complex_performance() print("ranks {}".format(ranks)) ``` <div> <h2>Call for Contributions</h2> <p>The <b>Emgraph</b> project welcomes your expertise and enthusiasm!</p> <p>Ways to contribute to <b>Emgraph</b>:</p> <ul> <li>Writing code</li> <li>Review pull requests</li> <li>Develop tutorials, presentations, and other educational materials</li> <li>Translate documentation and readme contents</li> </ul> </div> <div> <h2>Issues</h2> <p>If you happened to encounter any issue in the codes, please report it <a href="https://github.com/bi-graph/emgraph/issues">here</a>. A better way is to fork the repository on <b>Github</b> and/or create a pull request.</p> </div> [//]: # (<h3>Metrics</h3>) [//]: # (<p>Metrics that are calculated during evaluation:</p>) [//]: # () [//]: # (> * For further usages and calculating different metrics) [//]: # () [//]: # (<h3>Dataset format</h3>) [//]: # (<p>Your dataset should be in the following format &#40;Exclude the 'Row' column&#41;:</p>) <h3>More examples</h3> <p>Embedding wordnet11 graph using <code><b>DistMult</b></code> model:</p> ```python from sklearn.metrics import brier_score_loss, log_loss from scipy.special import expit from emgraph.datasets import BaseDataset, DatasetType from emgraph.models import DistMult def train_dist_mult(): X = BaseDataset.load_dataset(DatasetType.WN11) model = DistMult(batches_count=1, seed=555, epochs=20, k=10, loss='pairwise', loss_params={'margin': 5}) model.fit(X['train']) scores = model.predict(X['test']) print("Scores: ", scores) print("Brier score loss:", brier_score_loss(X['test_labels'], expit(scores))) # Executing the function if __name__ == '__main__': train_dist_mult() ``` [//]: # (<h3>References</h3>) [//]: # (<div>) [//]: # (<table>) [//]: # (<caption><b>References table</b></caption>) [//]: # ( <tr>) [//]: # ( <td><b>Number</b></td>) [//]: # ( <td align="center"><b>Reference</b></td>) [//]: # ( <td align="center"><b>Year</b></td>) [//]: # ( </tr>) [//]: # ( <tr>) [//]: # ( <td align="center">1</td>) [//]: # ( <td><code>Yang, Y., Lichtenwalter, R.N. & Chawla, N.V. Evaluating link prediction methods. Knowl Inf Syst 45, 751–782 &#40;2015&#41;.</code> <a href="https://doi.org/10.1007/s10115-014-0789-0") [//]: # (target="_blank">https://doi.org/10.1007/s10115-014-0789-0</a></td>) [//]: # ( <td align="center"><b>2015</b></td>) [//]: # ( </tr>) [//]: # ( <tr>) [//]: # ( <td align="center">2</td>) [//]: # ( <td><code>Liben-nowell, David & Kleinberg, Jon. &#40;2003&#41;. The Link Prediction Problem for Social Networks. Journal of the American Society for Information Science and Technology.</code><a href="https://doi.org/58.10.1002/asi.20591") [//]: # (target="_blank">https://doi.org/58.10.1002/asi.20591</a></td>) [//]: # ( <td align="center"><b>2003</b></td>) [//]: # ( </tr>) [//]: # ( <tr>) [//]: # ( <td align="center">2</td>) [//]: # ( <td><code>...</code></td>) [//]: # ( <td align="center"><b>...</b></td>) [//]: # ( </tr>) [//]: # (</table>) [//]: # (</div>) <h3>Future work</h3> - [x] Modulate the functions - [ ] Add more algorithms - [x] Run on CUDA cores - [x] Make it faster using vectorization etc. - [x] Add more preprocessors - [ ] Add dataset, graph, and dataframe manipulations - [x] Unify and reconstruct the architecture and eliminate redundancy <h2>If you found it helpful, please give us a <span>:star:</span></h2> <h2>License</h3> <p>Released under the BSD license</p> <div class="footer"><pre>Copyright &copy; 2019-2022 <b>Emgraph</b> Developers <a href="https://www.linkedin.com/in/soran-ghaderi/">Soran Ghaderi</a> (soran.gdr.cs@gmail.com) <a href="https://uk.linkedin.com/in/taleb-zarhesh">Taleb Zarhesh</a> (taleb.zarhesh@gmail.com)</pre> </div>


نیازمندی

مقدار نام
>=4.64.0,<5.0.0 tqdm
>=1.23.1,<2.0.0 numpy
>=1.4.3,<2.0.0 pandas
>=1.9.0,<2.0.0 scipy
>=2.8.0,<3.0.0 tensorflow
>=7.1.2,<8.0.0 pytest
>=6.2.0,<7.0.0 rdflib
>=1.9.1,<2.0.0 pydantic


زبان مورد نیاز

مقدار نام
>=3.10,<3.11 Python


نحوه نصب


نصب پکیج whl emgraph-1.0.0rc1:

    pip install emgraph-1.0.0rc1.whl


نصب پکیج tar.gz emgraph-1.0.0rc1:

    pip install emgraph-1.0.0rc1.tar.gz