معرفی شرکت ها


emgfit-0.4.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fitting of time-of-flight mass spectra with Hyper-EMG models
ویژگی مقدار
سیستم عامل -
نام فایل emgfit-0.4.1
نام emgfit
نسخه کتابخانه 0.4.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Stefan Paul
ایمیل نویسنده stefan.paul@triumf.ca
آدرس صفحه اصلی https://github.com/RobbenRoll/emgfit
آدرس اینترنتی https://pypi.org/project/emgfit/
مجوز BSD (3-clause)
====== emgfit ====== .. image:: https://github.com/RobbenRoll/emgfit/workflows/CI%20tests/badge.svg?branch=master :target: https://github.com/RobbenRoll/emgfit/actions?query=workflow%3A%22CI+tests%22 .. image:: https://img.shields.io/pypi/v/emgfit.svg :target: https://pypi.python.org/pypi/emgfit Fitting of time-of-flight mass spectra with Hyper-EMG models * Free software: 3-clause BSD license * Online documentation: https://RobbenRoll.github.io/emgfit. * Source code: https://github.com/RobbenRoll/emgfit `emgfit` is a Python package for peak fitting of time-of-flight (TOF) mass spectra with hyper-exponentially modified Gaussian (Hyper-EMG_ [1]_) model functions. `emgfit` is a wrapper around the `lmfit`_ [2]_ curve fitting package and uses many of lmfit's user-friendly high-level features. Experience with `lmfit` can be helpful but is not an essential prerequisite for using `emgfit` since the `lmfit` features stay largely 'hidden under the hood'. `emgfit` is designed to be user-friendly and offers automation features whenever reasonable while also supporting a large amount of flexibility and control for the user. Depending on the user's preferences an entire spectrum can be rapidly analyzed with only a few lines of code. Alternatively, various optional features are available to aid the user in a more rigorous analysis. The model functions and statistical methods provided by emgfit could be useful for analyses of spectroscopic data from a variety of other fields. Amongst other features, the `emgfit` toolbox includes: * Automatic and sensitive peak detection * Automatic import of literature values from the AME2020_ [3]_ (or AME2016_ [4]_) mass database * Automatic selection of the best suited peak-shape model * Fitting of low-statistics peaks with a binned maximum likelihood method * Simultaneous fitting of an entire spectrum with various peaks * Export of all relevant fit results including fit statistics and plots to an EXCEL output file for convenient post-processing `emgfit` is designed to be used within Jupyter Notebooks which have become a standard tool in the data science community. The usage and capabilities of `emgfit` are best explored by looking at the tutorial. The tutorial and more details can be found in the `online documentation`_. .. _Hyper-EMG: https://www.sciencedirect.com/science/article/abs/pii/S1387380616302913 .. _`lmfit`: https://lmfit.github.io/lmfit-py/ .. _AME2020: https://www-nds.iaea.org/amdc/ .. _AME2016: http://amdc.in2p3.fr/web/masseval.html .. _online documentation: https://RobbenRoll.github.io/emgfit References ---------- .. [1] Purushothaman, S., et al. "Hyper-EMG: A new probability distribution function composed of Exponentially Modified Gaussian distributions to analyze asymmetric peak shapes in high-resolution time-of-flight mass spectrometry." International Journal of Mass Spectrometry 421 (2017): 245-254. .. [2] Newville, M., et al. "LMFIT: Non-linear least-square minimization and curve-fitting for Python." Astrophysics Source Code Library (2016): ascl-1606. .. [3] Wang, M., et al. "The AME2020 atomic mass evaluation (II). Tables, graphs and references." Chinese Physics C 45 (2021): 030003. .. [4] Wang, M., et al. "The AME2016 atomic mass evaluation (II). Tables, graphs and references." Chinese Physics C 41.3 (2017): 030003.


نیازمندی

مقدار نام
>=1.0.0 lmfit
>=1.18.1 numpy
>=1.3.2 scipy
>=1.2.2 pandas
- matplotlib
>=0.3 docutils
>=7.19.0 ipython
>=5.3.4 ipykernel
>=0.9.39 numdifftools
- jupyter
- numba
- mpmath
>=3.0 emcee
- corner
- tqdm
- h5py
>=1.2.8 xlsxwriter
>=1.0.0 xlrd
- openpyxl
- termcolor
- joblib
- dill
- multiprocess
>=301 pywin32


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl emgfit-0.4.1:

    pip install emgfit-0.4.1.whl


نصب پکیج tar.gz emgfit-0.4.1:

    pip install emgfit-0.4.1.tar.gz