معرفی شرکت ها


emergency_simulation-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Emergency Response Simulation
ویژگی مقدار
سیستم عامل -
نام فایل emergency_simulation-1.0.0
نام emergency_simulation
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lucca Bertoncini
ایمیل نویسنده luccabazzo@gmail.com
آدرس صفحه اصلی https://github.com/luccabb/emergency_simulation
آدرس اینترنتی https://pypi.org/project/emergency_simulation/
مجوز -
# Emergency Response Simulation ## Installing `pip install emergency_simulation` ## Introduction Emergency Response Simulation is a package that helps anyone to create a simulation where you can create a city as a Graph of neighborhoods with the networkx library, and simulate emergency responses in it. The idea is to easily allow anyone to explore what is the best configuration for ambulance allocations in a given city. ## Creating a simulation. Getting started with Sample Code. ### Part 1. Creating a Graph with networkx ``` # importing packages from emergency_simulation import * import scipy.stats as sts import networkx as nx ## Creating Graph G = nx.Graph() # creating neighborhoods with their emergency rate G.add_node("Civic Center", emergency_distribution = sts.expon(scale=29)) G.add_node("Nob Hill", emergency_distribution = sts.expon(scale=35)) G.add_node("Downtown", emergency_distribution = sts.expon(scale=30)) G.add_node("Tenderloin", emergency_distribution = sts.expon(scale=36)) G.add_node("South of Market", emergency_distribution = sts.expon(scale=30)) G.add_node("Financial District", emergency_distribution = sts.expon(scale=20)) G.add_node("Yerba Buena", emergency_distribution = sts.expon(scale=29)) G.add_node("South Beach", emergency_distribution = sts.expon(scale=25)) G.add_node("Mission Bay", emergency_distribution = sts.expon(scale=30)) G.add_node("Potrero Hill", emergency_distribution = sts.expon(scale=33)) G.add_node("Inner Mission", emergency_distribution = sts.expon(scale=38)) G.add_node("Dogpatch", emergency_distribution = sts.expon(scale=32)) # creating edges with weight representing the distance in minutes between 2 neighborhoods G.add_edge("Civic Center", "Nob Hill", weight=5) G.add_edge("Civic Center", "Downtown", weight=5) G.add_edge("Civic Center", "Tenderloin", weight=3) G.add_edge("Civic Center", "South of Market", weight=5) G.add_edge("Nob Hill", "Downtown", weight=5) G.add_edge("Nob Hill", "Financial District", weight=4) G.add_edge("Downtown", "Financial District", weight=7) G.add_edge("Downtown", "Yerba Buena", weight=4) G.add_edge("Downtown", "Tenderloin", weight=4) G.add_edge("Financial District", "Yerba Buena", weight=5) G.add_edge("Financial District", "South Beach", weight=5) G.add_edge("Yerba Buena", "South of Market", weight=2) G.add_edge("Yerba Buena", "South Beach", weight=3) G.add_edge("South of Market", "Mission Bay", weight=5) G.add_edge("South of Market", "Potrero Hill", weight=5) G.add_edge("South of Market", "Inner Mission", weight=6) G.add_edge("South of Market", "Tenderloin", weight=5) G.add_edge("Mission Bay", "South Beach", weight=5) G.add_edge("Mission Bay", "Dogpatch", weight=5) G.add_edge("Mission Bay", "Potrero Hill", weight=5) G.add_edge("Dogpatch", "Potrero Hill", weight=4) G.add_edge("Potrero Hill", "Inner Mission", weight=5) ``` ### Part 2. Running the simulation ``` ## Running the simulation with a single configuration # neighborhoods that have ambulance stations neighborhoods = ["Downtown", "Potrero Hill", "South Beach"] # total ambulances available to be used total_ambulances = 13 # ambulance stations per neighborhood neighborhood_ambulance_allocations = neighborhood_ambulance_combinations(neighborhoods, total_ambulances) # random value to account for ambulance time to get to the exact location and assist the person location_and_assitance_distribution = sts.norm(loc=15, scale=5) # running the simulation for the first "neighborhood_ambulance_allocations" and for 20 steps simulation = run_simulation(G, neighborhood_ambulance_allocations[0], location_and_assitance_distribution, 20, log=True) ``` ### Part 3. Exploring statistics/metrics ``` # getting simulation statistics wait_time = simulation.emergency_queue.wait_time_per_emergency ambulance_stations = simulation.ambulance_stations print("======================== RESULTS ========================") print("Average Wait Time:", np.mean(wait_time)) print("Average Number of Ambulances left idle throughout the simulation") for station in ambulance_stations: print("___________") mean_available_ambulances = np.mean(station.available_ambulances_evolution) print(station.neighborhood) print("Average Number of Ambulances left idle") print(mean_available_ambulances) print("Ambulance Evolution") print(station.available_ambulances_evolution) ```


زبان مورد نیاز

مقدار نام
>=3.8.2 Python


نحوه نصب


نصب پکیج whl emergency_simulation-1.0.0:

    pip install emergency_simulation-1.0.0.whl


نصب پکیج tar.gz emergency_simulation-1.0.0:

    pip install emergency_simulation-1.0.0.tar.gz