معرفی شرکت ها


embetter-0.3.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Just a bunch of useful embeddings to get started quickly.
ویژگی مقدار
سیستم عامل -
نام فایل embetter-0.3.8
نام embetter
نسخه کتابخانه 0.3.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Vincent D. Warmerdam
ایمیل نویسنده -
آدرس صفحه اصلی https://koaning.github.io/embetter/
آدرس اینترنتی https://pypi.org/project/embetter/
مجوز -
<img src="https://raw.githubusercontent.com/koaning/embetter/main/docs/images/icon.png" width="125" height="125" align="right" /> # embetter > "Just a bunch of useful embeddings to get started quickly." <br> Embetter implements scikit-learn compatible embeddings for computer vision and text. It should make it very easy to quickly build proof of concepts using scikit-learn pipelines and, in particular, should help with [bulk labelling](https://www.youtube.com/watch?v=gDk7_f3ovIk). It's a also meant to play nice with [bulk](https://github.com/koaning/bulk) and [scikit-partial](https://github.com/koaning/scikit-partial). ## Install You can install via pip. ``` python -m pip install embetter ``` Many of the embeddings are optional depending on your use-case, so if you want to nit-pick to download only the tools that you need: ``` python -m pip install "embetter[text]" python -m pip install "embetter[sentence-tfm]" python -m pip install "embetter[spacy]" python -m pip install "embetter[sense2vec]" python -m pip install "embetter[bpemb]" python -m pip install "embetter[vision]" python -m pip install "embetter[all]" ``` ## API Design This is what's being implemented now. ```python # Helpers to grab text or image from pandas column. from embetter.grab import ColumnGrabber # Representations/Helpers for computer vision from embetter.vision import ImageLoader, TimmEncoder, ColorHistogramEncoder # Representations for text from embetter.text import SentenceEncoder, Sense2VecEncoder, BytePairEncoder, spaCyEncoder # Representations from multi-modal models from embetter.multi import ClipEncoder # Finetuning components from embetter.finetune import ForwardFinetuner # External embedding providers, typically needs an API key from embetter.external import CohereEncoder, OpenAIEncoder ``` All of these components are scikit-learn compatible, which means that you can apply them as you would normally in a scikit-learn pipeline. Just be aware that these components are stateless. They won't require training as these are all pretrained tools. ## Text Example ```python import pandas as pd from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from embetter.grab import ColumnGrabber from embetter.text import SentenceEncoder # This pipeline grabs the `text` column from a dataframe # which then get fed into Sentence-Transformers' all-MiniLM-L6-v2. text_emb_pipeline = make_pipeline( ColumnGrabber("text"), SentenceEncoder('all-MiniLM-L6-v2') ) # This pipeline can also be trained to make predictions, using # the embedded features. text_clf_pipeline = make_pipeline( text_emb_pipeline, LogisticRegression() ) dataf = pd.DataFrame({ "text": ["positive sentiment", "super negative"], "label_col": ["pos", "neg"] }) X = text_emb_pipeline.fit_transform(dataf, dataf['label_col']) text_clf_pipeline.fit(dataf, dataf['label_col']).predict(dataf) ``` ## Image Example The goal of the API is to allow pipelines like this: ```python import pandas as pd from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from embetter.grab import ColumnGrabber from embetter.vision import ImageLoader, TimmEncoder # This pipeline grabs the `img_path` column from a dataframe # then it grabs the image paths and turns them into `PIL.Image` objects # which then get fed into MobileNetv2 via TorchImageModels (timm). image_emb_pipeline = make_pipeline( ColumnGrabber("img_path"), ImageLoader(convert="RGB"), TimmEncoder("mobilenetv2_120d") ) dataf = pd.DataFrame({ "img_path": ["tests/data/thiscatdoesnotexist.jpeg"] }) image_emb_pipeline.fit_transform(dataf) ``` ## Batched Learning All of the encoding tools you've seen here are also compatible with the [`partial_fit` mechanic](https://scikit-learn.org/0.15/modules/scaling_strategies.html#incremental-learning) in scikit-learn. That means you can leverage [scikit-partial](https://github.com/koaning/scikit-partial) to build pipelines that can handle out-of-core datasets.


نیازمندی

مقدار نام
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=2.2.2 sentence-transformers
==2.0.0 sense2vec
>=0.3.3 bpemb
>=0.6.7 timm
>=0.25.0 openai
>=0.3.3 bpemb
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=2.2.2 sentence-transformers
==2.0.0 sense2vec
>=0.3.3 bpemb
>=0.6.7 timm
>=0.25.0 openai
==1.1 mkdocs
==4.6.3 mkdocs-material
==0.8.0 mkdocstrings
==0.1.2 mktestdocs
>=1.5.0 interrogate
>=3.6.0 flake8
>=4.0.2 pytest
>=19.3b0 black
>=2.2.0 pre-commit
==2.8.0 datasets
==3.4.3 matplotlib
>=0.25.0 openai
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=1.12.0 torch
>=1.0.0 scikit-learn
>=1.0.0 pandas
==2.0.0 sense2vec
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=2.2.2 sentence-transformers
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=3.5.0 spacy
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=2.2.2 sentence-transformers
==2.0.0 sense2vec
>=0.3.3 bpemb
>=1.0.0 scikit-learn
>=1.0.0 pandas
>=0.6.7 timm
>=1.0.0 scikit-learn
>=1.0.0 pandas


نحوه نصب


نصب پکیج whl embetter-0.3.8:

    pip install embetter-0.3.8.whl


نصب پکیج tar.gz embetter-0.3.8:

    pip install embetter-0.3.8.tar.gz