معرفی شرکت ها


emate-1.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

eMaTe can run in both CPU and GPU and can estimate the spectral density and related trace functions, such as entropy and Estrada index, even in matrices (directed or undirected graphs) with million of nodes.
ویژگی مقدار
سیستم عامل -
نام فایل emate-1.1.3
نام emate
نسخه کتابخانه 1.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Bruno Messias; Thomas K Peron
ایمیل نویسنده messias.physics@gmail.com
آدرس صفحه اصلی https://github.com/stdogpkg/emate
آدرس اینترنتی https://pypi.org/project/emate/
مجوز MIT
# ![eMaTe](emate.png) eMaTe it is a python package which the main goal is to provide methods capable of estimating the spectral densities and trace functions of large sparse matrices. eMaTe can run in both CPU and GPU and can estimate the spectral density and related trace functions, such as entropy and Estrada index, even in directed or undirected networks with million of nodes. ## Install ``` pip install emate ``` If you a have a GPU you should also install cupy. ## Kernel Polynomial Method (KPM) The Kernel Polynomial Method can estimate the spectral density of large sparse Hermitan matrices with a computational cost almost linear. This method combines three key ingredients: the Chebyshev expansion + the stochastic trace estimator + kernel smoothing. ### Example ```python import networkx as nx import numpy as np n = 3000 g = nx.erdos_renyi_graph(n , 3/n) W = nx.adjacency_matrix(g) vals = np.linalg.eigvals(W.todense()).real ``` ```python from emate.hermitian import tfkpm num_moments = 40 num_vecs = 40 extra_points = 10 ek, rho = tfkpm(W, num_moments, num_vecs, extra_points) ``` ```python import matplotlib.pyplot as plt plt.hist(vals, density=True, bins=100, alpha=.9, color="steelblue") plt.scatter(ek, rho, c="tomato", zorder=999, alpha=0.9, marker="d") ``` If the CUPY package it is available in your machine, you can also use the cupy implementation. When compared to tf-kpm, the Cupy-kpm is slower for median matrices (100k) and faster for larger matrices (> 10^6). The main reason it's because the tf-kpm was implemented in order to calc all te moments in a single step. ```python import matplotlib.pyplot as plt from emate.hermitian import cupykpm num_moments = 40 num_vecs = 40 extra_points = 10 ek, rho = cupykpm(W.tocsr(), num_moments, num_vecs, extra_points) plt.hist(vals, density=True, bins=100, alpha=.9, color="steelblue") plt.scatter(ek.get(), rho.get(), c="tomato", zorder=999, alpha=0.9, marker="d") ``` ![](docs/source/imgs/kpm.png) ## Stochastic Lanczos Quadrature (SLQ) >The problem of estimating the trace of matrix functions appears in applications ranging from machine learning and scientific computing, to computational biology.[2] ### Example #### Computing the Estrada index ```python from emate.symmetric.slq import pyslq import tensorflow as tf def trace_function(eig_vals): return tf.exp(eig_vals) num_vecs = 100 num_steps = 50 approximated_estrada_index, _ = pyslq(L_sparse, num_vecs, num_steps, trace_function) exact_estrada_index = np.sum(np.exp(vals_laplacian)) approximated_estrada_index, exact_estrada_index ``` The above code returns ``` (3058.012, 3063.16457163222) ``` #### Entropy ```python import scipy import scipy.sparse def entropy(eig_vals): s = 0. for val in eig_vals: if val > 0: s += -val*np.log(val) return s L = np.array(G.laplacian(normalized=True), dtype=np.float64) vals_laplacian = np.linalg.eigvalsh(L).real exact_entropy = entropy(vals_laplacian) def trace_function(eig_vals): def entropy(val): return tf.cond(val>0, lambda:-val*tf.log(val), lambda: 0.) return tf.map_fn(entropy, eig_vals) L_sparse = scipy.sparse.coo_matrix(L) num_vecs = 100 num_steps = 50 approximated_entropy, _ = pyslq(L_sparse, num_vecs, num_steps, trace_function) approximated_entropy, exact_entropy ``` ``` (-509.46283, -512.5283224633046) ``` [[1] Hutchinson, M. F. (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics-Simulation and Computation, 19(2), 433-450.](https://www.tandfonline.com/doi/abs/10.1080/03610919008812866) [[2] Ubaru, S., Chen, J., & Saad, Y. (2017). Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4), 1075-1099.](https://epubs.siam.org/doi/abs/10.1137/16M1104974) [[3] The Kernel Polynomial Method applied to tight binding systems with time-dependence]()


نیازمندی

مقدار نام
- scipy
- numpy
==1.15.3 tensorflow


نحوه نصب


نصب پکیج whl emate-1.1.3:

    pip install emate-1.1.3.whl


نصب پکیج tar.gz emate-1.1.3:

    pip install emate-1.1.3.tar.gz