معرفی شرکت ها


eli5-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Debug machine learning classifiers and explain their predictions
ویژگی مقدار
سیستم عامل -
نام فایل eli5-0.9.0
نام eli5
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mikhail Korobov, Konstantin Lopuhin
ایمیل نویسنده kmike84@gmail.com, kostia.lopuhin@gmail.com
آدرس صفحه اصلی https://github.com/eli5-org/eli5
آدرس اینترنتی https://pypi.org/project/eli5/
مجوز MIT license
==== ELI5 ==== .. image:: https://img.shields.io/pypi/v/eli5.svg :target: https://pypi.python.org/pypi/eli5 :alt: PyPI Version .. image:: https://github.com/eli5-org/eli5/workflows/build/badge.svg?branch=master :target: https://github.com/eli5-org/eli5/actions :alt: Build Status .. image:: https://codecov.io/github/TeamHG-Memex/eli5/coverage.svg?branch=master :target: https://codecov.io/github/TeamHG-Memex/eli5?branch=master :alt: Code Coverage .. image:: https://readthedocs.org/projects/eli5/badge/?version=latest :target: https://eli5.readthedocs.io/en/latest/?badge=latest :alt: Documentation ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. .. image:: https://raw.githubusercontent.com/TeamHG-Memex/eli5/master/docs/source/static/word-highlight.png :alt: explain_prediction for text data .. image:: https://raw.githubusercontent.com/TeamHG-Memex/eli5/master/docs/source/static/gradcam-catdog.png :alt: explain_prediction for image data It provides support for the following machine learning frameworks and packages: * scikit-learn_. Currently ELI5 allows to explain weights and predictions of scikit-learn linear classifiers and regressors, print decision trees as text or as SVG, show feature importances and explain predictions of decision trees and tree-based ensembles. ELI5 understands text processing utilities from scikit-learn and can highlight text data accordingly. Pipeline and FeatureUnion are supported. It also allows to debug scikit-learn pipelines which contain HashingVectorizer, by undoing hashing. * Keras_ - explain predictions of image classifiers via Grad-CAM visualizations. * xgboost_ - show feature importances and explain predictions of XGBClassifier, XGBRegressor and xgboost.Booster. * LightGBM_ - show feature importances and explain predictions of LGBMClassifier, LGBMRegressor and lightgbm.Booster. * CatBoost_ - show feature importances of CatBoostClassifier, CatBoostRegressor and catboost.CatBoost. * lightning_ - explain weights and predictions of lightning classifiers and regressors. * sklearn-crfsuite_. ELI5 allows to check weights of sklearn_crfsuite.CRF models. ELI5 also implements several algorithms for inspecting black-box models (see `Inspecting Black-Box Estimators`_): * TextExplainer_ allows to explain predictions of any text classifier using LIME_ algorithm (Ribeiro et al., 2016). There are utilities for using LIME with non-text data and arbitrary black-box classifiers as well, but this feature is currently experimental. * `Permutation importance`_ method can be used to compute feature importances for black box estimators. Explanation and formatting are separated; you can get text-based explanation to display in console, HTML version embeddable in an IPython notebook or web dashboards, a ``pandas.DataFrame`` object if you want to process results further, or JSON version which allows to implement custom rendering and formatting on a client. .. _lightning: https://github.com/scikit-learn-contrib/lightning .. _scikit-learn: https://github.com/scikit-learn/scikit-learn .. _sklearn-crfsuite: https://github.com/TeamHG-Memex/sklearn-crfsuite .. _LIME: https://eli5.readthedocs.io/en/latest/blackbox/lime.html .. _TextExplainer: https://eli5.readthedocs.io/en/latest/tutorials/black-box-text-classifiers.html .. _xgboost: https://github.com/dmlc/xgboost .. _LightGBM: https://github.com/Microsoft/LightGBM .. _Catboost: https://github.com/catboost/catboost .. _Keras: https://keras.io/ .. _Permutation importance: https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html .. _Inspecting Black-Box Estimators: https://eli5.readthedocs.io/en/latest/blackbox/index.html License is MIT. Check `docs <https://eli5.readthedocs.io/>`_ for more. .. note:: This is the same project as https://github.com/TeamHG-Memex/eli5/, but due to temporary github access issues, 0.11 release is prepared in https://github.com/eli5-org/eli5 (this repo). ---- .. image:: https://hyperiongray.s3.amazonaws.com/define-hg.svg :target: https://www.hyperiongray.com/?pk_campaign=github&pk_kwd=eli5 :alt: define hyperiongray Changelog ========= 0.13.0 (2022-05-11) ------------------- * drop python2.7 support * fix newer xgboost with unnamed features 0.12.0 (2022-05-11) ------------------- * use Jinja2 >= 3.0.0, please use eli5 0.11 if you'd prefer to use an older version of Jinja2 * support lightgbm.Booster 0.11.0 (2021-01-23) ------------------- * fixed scikit-learn 0.22+ and 0.24+ support. * allow nan inputs in permutation importance (if model supports them). * fix for permutation importance with sample_weight and cross-validation. * doc fixes (typos, keras and TF versions clarified). * don't use deprecated getargspec function. * less type ignores, mypy updated to 0.750. * python 3.8 and 3.9 tested on GI, python 3.4 not tested any more. * tests moved to github actions. 0.10.1 (2019-08-29) ------------------- * Don't include typing dependency on Python 3.5+ to fix installation on Python 3.7 0.10.0 (2019-08-21) ------------------- * Keras image classifiers: explaining predictions with Grad-CAM (GSoC-2019 project by @teabolt). 0.9.0 (2019-07-05) ------------------ * CatBoost support: show feature importances of CatBoostClassifier, CatBoostRegressor and catboost.CatBoost. * Test fixes: fixes for scikit-learn 0.21+, use xenial base on Travis * Catch exceptions from improperly installed LightGBM 0.8.2 (2019-04-04) ------------------ * fixed scikit-learn 0.21+ support (randomized linear models are removed from scikit-learn); * fixed pandas.DataFrame + xgboost support for PermutationImportance; * fixed tests with recent numpy; * added conda install instructions (conda package is maintained by community); * tutorial is updated to use xgboost 0.81; * update docs to use pandoc 2.x. 0.8.1 (2018-11-19) ------------------ * fixed Python 3.7 support; * added support for XGBoost > 0.6a2; * fixed deprecation warnings in numpy >= 1.14; * documentation, type annotation and test improvements. 0.8 (2017-08-25) ---------------- * **backwards incompatible**: DataFrame objects with explanations no longer use indexes and pivot tables, they are now just plain DataFrames; * new method for inspection black-box models is added (`eli5-permutation-importance`); * transfor_feature_names is implemented for sklearn's MinMaxScaler, StandardScaler, MaxAbsScaler and RobustScaler; * zero and negative feature importances are no longer hidden; * fixed compatibility with scikit-learn 0.19; * fixed compatibility with LightGBM master (2.0.5 and 2.0.6 are still unsupported - there are bugs in LightGBM); * documentation, testing and type annotation improvements. 0.7 (2017-07-03) ---------------- * better pandas.DataFrame integration: `eli5.explain_weights_df`, `eli5.explain_weights_dfs`, `eli5.explain_prediction_df`, `eli5.explain_prediction_dfs`, `eli5.format_as_dataframe <eli5.formatters.as_dataframe.format_as_dataframe>` and `eli5.format_as_dataframes <eli5.formatters.as_dataframe.format_as_dataframes>` functions allow to export explanations to pandas.DataFrames; * `eli5.explain_prediction` now shows predicted class for binary classifiers (previously it was always showing positive class); * `eli5.explain_prediction` supports ``targets=[<class>]`` now for binary classifiers; e.g. to show result as seen for negative class, you can use ``eli5.explain_prediction(..., targets=[False])``; * support `eli5.explain_prediction` and `eli5.explain_weights` for libsvm-based linear estimators from sklearn.svm: ``SVC(kernel='linear')`` (only binary classification), ``NuSVC(kernel='linear')`` (only binary classification), ``SVR(kernel='linear')``, ``NuSVR(kernel='linear')``, ``OneClassSVM(kernel='linear')``; * fixed `eli5.explain_weights` for LightGBM_ estimators in Python 2 when ``importance_type`` is 'split' or 'weight'; * testing improvements. 0.6.4 (2017-06-22) ------------------ * Fixed `eli5.explain_prediction` for recent LightGBM_ versions; * fixed Python 3 deprecation warning in formatters.html; * testing improvements. 0.6.3 (2017-06-02) ------------------ * `eli5.explain_weights` and `eli5.explain_prediction` works with xgboost.Booster, not only with sklearn-like APIs; * `eli5.formatters.as_dict.format_as_dict` is now available as ``eli5.format_as_dict``; * testing and documentation fixes. 0.6.2 (2017-05-17) ------------------ * readable `eli5.explain_weights` for XGBoost models trained on pandas.DataFrame; * readable `eli5.explain_weights` for LightGBM models trained on pandas.DataFrame; * fixed an issue with `eli5.explain_prediction` for XGBoost models trained on pandas.DataFrame when feature names contain dots; * testing improvements. 0.6.1 (2017-05-10) ------------------ * Better pandas support in `eli5.explain_prediction` for xgboost, sklearn, LightGBM and lightning. 0.6 (2017-05-03) ---------------- * Better scikit-learn Pipeline support in `eli5.explain_weights`: it is now possible to pass a Pipeline object directly. Curently only SelectorMixin-based transformers, FeatureUnion and transformers with ``get_feature_names`` are supported, but users can register other transformers; built-in list of supported transformers will be expanded in future. See `sklearn-pipelines` for more. * Inverting of HashingVectorizer is now supported inside FeatureUnion via `eli5.sklearn.unhashing.invert_hashing_and_fit`. See `sklearn-unhashing`. * Fixed compatibility with Jupyter Notebook >= 5.0.0. * Fixed `eli5.explain_weights` for Lasso regression with a single feature and no intercept. * Fixed unhashing support in Python 2.x. * Documentation and testing improvements. 0.5 (2017-04-27) ---------------- * LightGBM_ support: `eli5.explain_prediction` and `eli5.explain_weights` are now supported for ``LGBMClassifier`` and ``LGBMRegressor`` (see `eli5 LightGBM support <library-lightgbm>`). * fixed text formatting if all weights are zero; * type checks now use latest mypy; * testing setup improvements: Travis CI now uses Ubuntu 14.04. .. _LightGBM: https://github.com/Microsoft/LightGBM 0.4.2 (2017-03-03) ------------------ * bug fix: eli5 should remain importable if xgboost is available, but not installed correctly. 0.4.1 (2017-01-25) ------------------ * feature contribution calculation fixed for `eli5.xgboost.explain_prediction_xgboost` 0.4 (2017-01-20) ---------------- * `eli5.explain_prediction`: new 'top_targets' argument allows to display only predictions with highest or lowest scores; * `eli5.explain_weights` allows to customize the way feature importances are computed for XGBClassifier and XGBRegressor using ``importance_type`` argument (see docs for the `eli5 XGBoost support <library-xgboost>`); * `eli5.explain_weights` uses gain for XGBClassifier and XGBRegressor feature importances by default; this method is a better indication of what's going, and it makes results more compatible with feature importances displayed for scikit-learn gradient boosting methods. 0.3.1 (2017-01-16) ------------------ * packaging fix: scikit-learn is added to install_requires in setup.py. 0.3 (2017-01-13) ---------------- * `eli5.explain_prediction` works for XGBClassifier, XGBRegressor from XGBoost and for ExtraTreesClassifier, ExtraTreesRegressor, GradientBoostingClassifier, GradientBoostingRegressor, RandomForestClassifier, RandomForestRegressor, DecisionTreeClassifier and DecisionTreeRegressor from scikit-learn. Explanation method is based on http://blog.datadive.net/interpreting-random-forests/ . * `eli5.explain_weights` now supports tree-based regressors from scikit-learn: DecisionTreeRegressor, AdaBoostRegressor, GradientBoostingRegressor, RandomForestRegressor and ExtraTreesRegressor. * `eli5.explain_weights` works for XGBRegressor; * new `TextExplainer <lime-tutorial>` class allows to explain predictions of black-box text classification pipelines using LIME algorithm; many improvements in `eli5.lime <eli5-lime>`. * better ``sklearn.pipeline.FeatureUnion`` support in `eli5.explain_prediction`; * rendering performance is improved; * a number of remaining feature importances is shown when the feature importance table is truncated; * styling of feature importances tables is fixed; * `eli5.explain_weights` and `eli5.explain_prediction` support more linear estimators from scikit-learn: HuberRegressor, LarsCV, LassoCV, LassoLars, LassoLarsCV, LassoLarsIC, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, PassiveAggressiveRegressor, RidgeClassifier, RidgeClassifierCV, TheilSenRegressor. * text-based formatting of decision trees is changed: for binary classification trees only a probability of "true" class is printed, not both probabilities as it was before. * `eli5.explain_weights` supports ``feature_filter`` in addition to ``feature_re`` for filtering features, and `eli5.explain_prediction` now also supports both of these arguments; * 'Weight' column is renamed to 'Contribution' in the output of `eli5.explain_prediction`; * new ``show_feature_values=True`` formatter argument allows to display input feature values; * fixed an issue with analyzer='char_wb' highlighting at the start of the text. 0.2 (2016-12-03) ---------------- * XGBClassifier support (from `XGBoost <https://github.com/dmlc/xgboost>`__ package); * `eli5.explain_weights` support for sklearn OneVsRestClassifier; * std deviation of feature importances is no longer printed as zero if it is not available. 0.1.1 (2016-11-25) ------------------ * packaging fixes: require attrs > 16.0.0, fixed README rendering 0.1 (2016-11-24) ---------------- * HTML output; * IPython integration; * JSON output; * visualization of scikit-learn text vectorizers; * `sklearn-crfsuite <https://github.com/TeamHG-Memex/sklearn-crfsuite>`__ support; * `lightning <https://github.com/scikit-learn-contrib/lightning>`__ support; * `eli5.show_weights` and `eli5.show_prediction` functions; * `eli5.explain_weights` and `eli5.explain_prediction` functions; * `eli5.lime <eli5-lime>` improvements: samplers for non-text data, bug fixes, docs; * HashingVectorizer is supported for regression tasks; * performance improvements - feature names are lazy; * sklearn ElasticNetCV and RidgeCV support; * it is now possible to customize formatting output - show/hide sections, change layout; * sklearn OneVsRestClassifier support; * sklearn DecisionTreeClassifier visualization (text-based or svg-based); * dropped support for scikit-learn < 0.18; * basic mypy type annotations; * ``feature_re`` argument allows to show only a subset of features; * ``target_names`` argument allows to change display names of targets/classes; * ``targets`` argument allows to show a subset of targets/classes and change their display order; * documentation, more examples. 0.0.6 (2016-10-12) ------------------ * Candidate features in eli5.sklearn.InvertableHashingVectorizer are ordered by their frequency, first candidate is always positive. 0.0.5 (2016-09-27) ------------------ * HashingVectorizer support in explain_prediction; * add an option to pass coefficient scaling array; it is useful if you want to compare coefficients for features which scale or sign is different in the input; * bug fix: classifier weights are no longer changed by eli5 functions. 0.0.4 (2016-09-24) ------------------ * eli5.sklearn.InvertableHashingVectorizer and eli5.sklearn.FeatureUnhasher allow to recover feature names for pipelines which use HashingVectorizer or FeatureHasher; * added support for scikit-learn linear regression models (ElasticNet, Lars, Lasso, LinearRegression, LinearSVR, Ridge, SGDRegressor); * doc and vec arguments are swapped in explain_prediction function; vec can now be omitted if an example is already vectorized; * fixed issue with dense feature vectors; * all class_names arguments are renamed to target_names; * feature name guessing is fixed for scikit-learn ensemble estimators; * testing improvements. 0.0.3 (2016-09-21) ------------------ * support any black-box classifier using LIME (http://arxiv.org/abs/1602.04938) algorithm; text data support is built-in; * "vectorized" argument for sklearn.explain_prediction; it allows to pass example which is already vectorized; * allow to pass feature_names explicitly; * support classifiers without get_feature_names method using auto-generated feature names. 0.0.2 (2016-09-19) ------------------ * 'top' argument of ``explain_prediction`` can be a tuple (num_positive, num_negative); * classifier name is no longer printed by default; * added eli5.sklearn.explain_prediction to explain individual examples; * fixed numpy warning. 0.0.1 (2016-09-15) ------------------ Pre-release.


نحوه نصب


نصب پکیج whl eli5-0.9.0:

    pip install eli5-0.9.0.whl


نصب پکیج tar.gz eli5-0.9.0:

    pip install eli5-0.9.0.tar.gz