معرفی شرکت ها


elemeta-1.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Metafeature Extraction for Unstructured Data
ویژگی مقدار
سیستم عامل -
نام فایل elemeta-1.0.5
نام elemeta
نسخه کتابخانه 1.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lior Durahly
ایمیل نویسنده lior.durahly@superwise.ai
آدرس صفحه اصلی https://docs.elemeta.ai
آدرس اینترنتی https://pypi.org/project/elemeta/
مجوز MIT
# Elemeta: Metafeature Extraction for Unstructured Data [![](https://github.com/superwise-ai/elemeta/workflows/Release/badge.svg?branch=main)](https://github.com/superwise-ai/elemeta/actions/workflows/release.yaml) [![](https://img.shields.io/pypi/pyversions/elemeta)](https://pypi.org/project/elemeta/) [![](https://img.shields.io/github/license/superwise-ai/elemeta)](https://github.com/superwise-ai/elemeta/blob/main/LICENSE) [![](https://img.shields.io/badge/docs-quickstart-orange)](https://docs.elemeta.ai/getting_started.html) ![](./docs/images/elemeta_cover_image_black.png) Elemeta is an open-source library in Python for metafeature extraction. With it, you will be able to explore, monitor, and extract features from unstructured data through enriched tabular representations. It provides a straightforward Python API for metafeature extraction from unstructured data like text and images. Key usage of Elemeta includes: - Exploratory Data Analysis (EDA) - extract useful metafeature on unstructured data to analyze, investigate, and summarize the main characteristics and employ data visualization methods. - Data and model monitoring - utilize structured ML monitoring techniques in addition to the typical latent embedding visualizations. - Feature extraction - engineer alternative features to be utilized in simpler models such as decision trees. ## Getting Started Get started with Elemeta by installing the Python library via pip ```bash pip install elemeta ``` Once installed, there are a few example dataframes that can be used for testing the library. You can find them in `elemeta.dataset.dateset` ```python from elemeta.dataset.dataset import get_imdb_reviews # Load existing dataframe reviews = get_imdb_reviews() ``` After you have a dataset with the text column, you can start using the library with the following Python API: ```python from elemeta.nlp.metafeature_extractors_runner import MetafeatureExtractorsRunner metafeature_extractors_runner = MetafeatureExtractorsRunner() reviews = metafeature_extractors_runner.run_on_dataframe(dataframe=reviews, text_column='review') reviews.show() ``` ![](./docs/images/elemeta_reviews.gif) ### Pandas DataFrames Elemeta can enrich standard dataframe objects: ```python from elemeta.nlp.metafeature_extractors_runner import MetafeatureExtractorsRunner import pandas as pd df = pd.dataframe({"text": ["Hi I just met you, and this is crazy", "What does the fox say?", "I love robots"}) metafeature_extractors_runner = MetafeatureExtractorsRunner() df_with_metafeatures = metafeature_extractors_runner.run_on_dataframe(dataframe=reviews, text_column="text") ``` ### Strings Elemeta can enrich specific strings: ```python from elemeta.nlp.metafeature_extractors_runner import MetafeatureExtractorsRunner metafeature_extractors_runner = MetafeatureExtractorsRunner() metafeature_extractors_runner.run("This is a text about how good life is :)") ``` ## Documentation - [Documentation homepage](https://docs.elemeta.ai/index.html) - [Quickstart notebook](https://colab.research.google.com/github/superwise-ai/elemeta/blob/main/docs/notebooks/quick_start.ipynb) - [Use cases](https://docs.elemeta.ai/use_cases/index.html) - [API reference](https://docs.elemeta.ai/apidocs.html) This package aims to help enrich non-tabular data (i.e. text:nlp pictures: image processing and so on). Currently, we only support textual data, and we enrich it by extracting meta features (such as avg word length). ## Community Elemeta is brand new, so we don't have a formal process for contributions just yet. If you have feedback or would like to contribute, just go ahead and post a [GitHub issue](https://github.com/superwise-ai/elemeta/issues)


نیازمندی

مقدار نام
>=3.8,<4.0 nltk
>=1.0,<2.0 langdetect
>=3.3,<4.0 vadersentiment
>=2.2,<3.0 emoji
>=1.22,<2.0 numpy
>=1.1,<2.0 pandas
>=0.7,<0.8 textstat
>=1.0,<2.0 profanity-check
>=0.7,<0.8 better-profanity
>=0.17,<0.18 textblob
>=0.7,<0.8 datefinder


زبان مورد نیاز

مقدار نام
>=3.8,<4.0.0 Python


نحوه نصب


نصب پکیج whl elemeta-1.0.5:

    pip install elemeta-1.0.5.whl


نصب پکیج tar.gz elemeta-1.0.5:

    pip install elemeta-1.0.5.tar.gz