معرفی شرکت ها


elaspic2-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Predicting the effect of mutations on protein folding and protein-protein interaction.
ویژگی مقدار
سیستم عامل -
نام فایل elaspic2-0.1.7
نام elaspic2
نسخه کتابخانه 0.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alexey Strokach
ایمیل نویسنده alex.strokach@utoronto.ca
آدرس صفحه اصلی https://gitlab.com/elaspic/elaspic2
آدرس اینترنتی https://pypi.org/project/elaspic2/
مجوز -
# ELASPIC2 [![conda](https://img.shields.io/conda/dn/ostrokach-forge/elaspic2.svg)](https://anaconda.org/ostrokach-forge/elaspic2/) [![docs](https://img.shields.io/badge/docs-v0.1.7-blue.svg)](https://elaspic.gitlab.io/elaspic2/v0.1.7/) [![pipeline status](https://gitlab.com/elaspic/elaspic2/badges/v0.1.7/pipeline.svg)](https://gitlab.com/elaspic/elaspic2/commits/v0.1.7/) [![coverage report](https://gitlab.com/elaspic/elaspic2/badges/v0.1.7/coverage.svg?job=docs)](https://elaspic.gitlab.io/elaspic2/v0.1.7/htmlcov/) Predicting the effect of mutations on protein folding and protein-protein interaction. ## Usage ### Web server `ELASPIC2` has been integrated into the original ELASPIC web server, available at: <http://elaspic.kimlab.org>. ### Python API The following notebooks can be used to explore the basic functionality of `ELASPIC2`. | Notebook name | Google Colab | Description | | ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- | | `10_stability_demo.ipynb` | <a href="https://colab.research.google.com/github/elaspic/elaspic2/blob/v0.1.7/notebooks/10_stability_demo.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" width="200px" /></a> | Example notebook showing how to use ELASPIC2 to predict the effect of mutations on _protein stability_. | | `10_affinity_demo.ipynb` | <a href="https://colab.research.google.com/github/elaspic/elaspic2/blob/v0.1.7/notebooks/10_affinity_demo.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" width="200px" /></a> | Example notebook showing how to use ELASPIC2 to predict the effect of mutations on _protein binding affinity_. | See other notebooks in the [`notebooks/`](https://gitlab.com/elaspic/elaspic2/-/tree/master/notebooks) directory for more detailed information about how ELASPIC2 models are trained and validated. ### REST API `ELASPIC2` is accessible through a REST API, documented at: <https://elaspic2-api.proteinsolver.org/docs>. The following code snippet shows how the REST API can be used from within Python. ```python import json import time import requests ELASPIC2_JOBS_API = "https://elaspic2-api.proteinsolver.org/jobs/" mutation_info = { "protein_structure_url": "https://files.rcsb.org/download/1MFG.pdb", "protein_sequence": ( "GSMEIRVRVEKDPELGFSISGGVGGRGNPFRPDDDGIFVTRVQPEGPASKLLQPGDKIIQANGYSFINI" "EHGQAVSLLKTFQNTVELIIVREVSS" ), "mutations": "G1A,G1C", "ligand_sequence": "EYLGLDVPV", } # Submit a job job_request = requests.post(ELASPIC2_JOBS_API, json=mutation_info).json() while True: # Wait for the job to finish time.sleep(10) job_status = requests.get(job_request["web_url"]).json() if job_status["status"] in ["error", "success"]: break # Collect results job_result = requests.get(job_status["web_url"]).json() # Delete job (optional) requests.delete(job_request["web_url"]).raise_for_status() # Show results print(job_result) ``` ### Command-line interface (CLI) Finally, `ELASPIC2` can be used through a command-line interface. ```bash python -m elaspic2 \ --protein-structure tests/structures/1MFG.pdb \ --protein-sequence GSMEIRVRVEKDPELGFSISGGVGGRGNPFRPDDDGIFVTRVQPEGPASKLLQPGDKIIQANGYSFINIEHGQAVSLLKTFQNTVELIIVREVSS \ --ligand-sequence EYLGLDVPV \ --mutations G1A.G1C ``` ## Installation ### Docker Docker images that contain `ELASPIC2` and all dependencies are available at: <https://gitlab.com/elaspic/elaspic2/container_registry>. ### Conda-pack Conda-pack tarballs containing `ELASPIC2` and all dependencies are available at: <http://conda-envs.proteinsolver.org/elaspic2/>. Simply download and extract the tarball into a desired directory and run `conda-unpack` to unpack. ```bash wget http://conda-envs.proteinsolver.org/elaspic2/elaspic2-latest.tar.gz mkdir ~/elaspic2 tar -xzf elaspic2-latest.tar.gz -C ~/elaspic2 source ~/elaspic2/bin/activate conda-unpack ``` ### Conda `ELASPIC2` can be installed using `conda`. However, the `torch-geometric` dependencies have to be installed separately. Replace `cudatoolkit=10.1` and `cu101` with the desired CUDA version. ```bash conda create -n elaspic2 -c pytorch -c ostrokach-forge -c conda-forge -c defaults elaspic2 "cudatoolkit=10.1" conda activate elaspic2 pip install "torch-scatter==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-sparse==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-cluster==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-spline-conv==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-geometric==1.6.1" ``` ### Python package index (PyPI) `ELASPIC2` can be installed using `pip`. However, the `torch` and `torch-geometric` dependencies have to be installed from external channels. Replace `cu101` with the desired CUDA version. ```bash pip install elaspic2 pip install "torch==1.7.0+cu101" -f https://download.pytorch.org/whl/torch_stable.html pip install "torchvision==0.8.1+cu101" -f https://download.pytorch.org/whl/torch_stable.html pip install "torch-scatter==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-sparse==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-cluster==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-spline-conv==latest+cu101" -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install "torch-geometric==1.6.1" ``` ## Data Data used to train and validate the `ELASPIC2` models are available at <http://elaspic2.data.proteinsolver.org> and <http://protein-folding-energy.data.proteinsolver.org>. See the [`protein-folding-energy`](https://gitlab.com/datapkg/protein-folding-energy) repository to see how these data were generated. ## Acknowledgements <div align="center"> <img src="docs/_static/acknowledgements.svg" width="45%" /> </div> ## References - Alexey Strokach, Tian Yu Lu, Philip M. Kim. _ELASPIC2 (EL2): Combining contextualized language models and graph neural networks to predict effects of mutations_.


نیازمندی

مقدار نام
<2.0,>=1.78 biopython
<0.8,>=0.7 brotlipy
<0.4,>=0.3 fire
<1.10,>=1.9 mdtraj
<1.2,>=1.1 mmtf-python
<2.8,>=2.7 nglview
<2.8,>=2.7 paramiko
<6.3,>=6.2 tenacity
<4.55,>=4.50 tqdm


نحوه نصب


نصب پکیج whl elaspic2-0.1.7:

    pip install elaspic2-0.1.7.whl


نصب پکیج tar.gz elaspic2-0.1.7:

    pip install elaspic2-0.1.7.tar.gz