معرفی شرکت ها


elapid-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Species distribution modeling support tools
ویژگی مقدار
سیستم عامل -
نام فایل elapid-1.0.1
نام elapid
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Christopher Anderson
ایمیل نویسنده cbanders@stanford.edu
آدرس صفحه اصلی https://elapid.org
آدرس اینترنتی https://pypi.org/project/elapid/
مجوز MIT
# elapid <img src="https://earth-chris.github.io/elapid/img/amazon.jpg" alt="the amazon"/> <p align="center"> <em>Contemporary species distribution modeling tools for python.</em> </p> ![GitHub](https://img.shields.io/github/license/earth-chris/elapid) ![PyPI version](https://img.shields.io/pypi/v/elapid) ![Anaconda version](https://anaconda.org/conda-forge/elapid/badges/version.svg) ![PyPI downloads](https://img.shields.io/pypi/dm/elapid) ![GitHub last commit](https://img.shields.io/github/last-commit/earth-chris/elapid) [![JOSS manuscript status](https://joss.theoj.org/papers/ac415a024261efb3b397a1bad6f9cde6/status.svg)](https://earth-chris.github.io/elapid/paper/draft-paper.pdf) --- **Documentation**: [earth-chris.github.io/elapid](https://earth-chris.github.io/elapid) **Source code**: [earth-chris/elapid](https://github.com/earth-chris/elapid) --- ## :snake: Introduction `elapid` is a series of species distribution modeling tools for python. This includes a custom implementation of [Maxent][home-maxent] and a suite of methods to simplify working with biogeography data. The name is an homage to *A Biogeographic Analysis of Australian Elapid Snakes* (H.A. Nix, 1986), the paper widely credited with defining the essential bioclimatic variables to use in species distribution modeling. It's also a snake pun (a python wrapper for mapping snake biogeography). --- ## :seedling: Installation `pip install elapid` or `conda install -c conda-forge elapid` Installing `glmnet` is optional, but recommended. This can be done with `pip install elapid[glmnet]` or `conda install -c conda-forge elapid glmnet`. For more support, and for information on why this package is recommended, see [this page](https://elapid.org/install#installing-glmnet). The `conda` install is recommended for Windows users. While there is a `pip` distribution, you may experience some challenges. The easiest way to overcome them is to use [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl/about). Otherwise, see [this page](https://elapid.org/install) for support. --- ## :deciduous_tree: Why use elapid? The amount and quality of bioegeographic data has increased dramatically over the past decade, as have cloud-based tools for working with it. `elapid` was designed to provide a set of modern, python-based tools for working with species occurrence records and environmental covariates to map different dimensions of a species' niche. `elapid` supports working with modern geospatial data formats and uses contemporary approaches to training statistical models. It uses `sklearn` conventions to fit and apply models, `rasterio` to handle raster operations, `geopandas` for vector operations, and processes data under the hood with `numpy`. This makes it easier to do things like fit/apply models to multi-temporal and multi-scale data, fit geographically-weighted models, create ensembles, precisely define background point distributions, and summarize model predictions. It does the following things reasonably well: :globe_with_meridians: **Point sampling** Select random geographic point samples (aka background or pseudoabsence points) within polygons or rasters, handling `nodata` locations, as well as sampling from bias maps (using `elapid.sample_raster()`, `elapid.sample_vector()`, or `elapid.sample_bias_file()`). :chart_with_upwards_trend: **Vector annotation** Extract and annotate point data from rasters, creating `GeoDataFrames` with sample locations and their matching covariate values (using `elapid.annotate()`). On-the-fly reprojection, dropping nodata, multi-band inputs and multi-file inputs are all supported. :bar_chart: **Zonal statistics** Calculate zonal statistics from multi-band, multi-raster data into a single `GeoDataFrame` from one command (using `elapid.zonal_stats()`). :bug: **Feature transformations** Transform covariate data into derivative `features` to expand data dimensionality and improve prediction accuracy (like `elapid.ProductTransformer()`, `elapid.HingeTransformer()`, or the all-in-one `elapid.MaxentFeatureTransformer()`). :bird: **Species distribution modeling** Train and apply species distribution models based on annotated point data, configured with sensible defaults (like `elapid.MaxentModel()` and `elapid.NicheEnvelopeModel()`). :satellite: **Training spatially-aware models** Compute spatially-explicit sample weights, checkerboard train/test splits, or geographically-clustered cross-validation splits to reduce spatial autocorellation effects (with `elapid.distance_weights()`, `elapid.checkerboard_split()` and `elapid.GeographicKFold()`). :earth_asia: **Applying models to rasters** Apply any pixel-based model with a `.predict()` method to raster data to easily create prediction probability maps (like training a `RandomForestClassifier()` and applying with `elapid.apply_model_to_rasters()`). :cloud: **Cloud-native geo support** Work with cloud- or web-hosted raster/vector data (on `https://`, `gs://`, `s3://`, etc.) to keep your disk free of temporary files. Check out some example code snippets and workflows on the [Working with Geospatial Data](https://elapid.org/examples/WorkingWithGeospatialData/) page. --- :snake: `elapid` requires some effort on the user's part to draw samples and extract covariate data. This is by design. Selecting background samples, computing sample weights, splitting train/test data, and specifying training parameters are all critical modeling choices that have profound effects on inference and interpretation. The extra flexibility provided by `elapid` enables more control over the seemingly black-box approach of Maxent, enabling users to better tune and evaluate their models. --- ## Developed by [Christopher Anderson](https://cbanderson.info)[^1] [^2] <a href="https://twitter.com/earth_chris">![Twitter Follow](https://img.shields.io/twitter/follow/earth_chris)</a> <a href="https://github.com/earth-chris">![GitHub Stars](https://img.shields.io/github/stars/earth-chris?affiliations=OWNER%2CCOLLABORATOR&style=social)</a> [home-maxent]: https://biodiversityinformatics.amnh.org/open_source/maxent/ [r-maxnet]: https://github.com/mrmaxent/maxnet [^1]: [EO Lab, Planet Labs PBC](https://www.planet.com) [^2]: [Center for Conservation Biology, Stanford University](https://ccb.stanford.edu)


نیازمندی

مقدار نام
>=1.1.0 descartes
>=0.7.0 geopandas
>=1.18 numpy
>=1.0.3 pandas
>=3.0 pyproj
>=1.2.1 rasterio
>=0.9 rtree
>=0.22.2 scikit-learn
>=1.7.0 shapely
>=4.60.0 tqdm
- glmnet


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl elapid-1.0.1:

    pip install elapid-1.0.1.whl


نصب پکیج tar.gz elapid-1.0.1:

    pip install elapid-1.0.1.tar.gz