معرفی شرکت ها


eeharvest-1.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An automated, convenient downloader for Google Earth Engine datasets in Python
ویژگی مقدار
سیستم عامل -
نام فایل eeharvest-1.6.0
نام eeharvest
نسخه کتابخانه 1.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Januar Harianto
ایمیل نویسنده januar.harianto@sydney.edu.au
آدرس صفحه اصلی https://github.com/sydney-informatics-hub/eeharvest
آدرس اینترنتی https://pypi.org/project/eeharvest/
مجوز LGPL-3.0-or-later
# eeharvest <p align="center"> <a href="https://github.com/Sydney-Informatics-Hub/eeharvest"><img src="https://github.com/Sydney-Informatics-Hub/eeharvest/blob/main/docs/_static/eeharvest.png" alt="header" width="200"></a> </p> [![Project generated with PyScaffold](https://img.shields.io/badge/-PyScaffold-005CA0?logo=pyscaffold)](https://pyscaffold.org/) [![Commitizen friendly](https://img.shields.io/badge/commitizen-friendly-brightgreen.svg)](http://commitizen.github.io/cz-cli/) [![codecov](https://codecov.io/github/Sydney-Informatics-Hub/eeharvest/branch/main/graph/badge.svg?token=KOEXHJBR2I)](https://codecov.io/github/Sydney-Informatics-Hub/eeharvest) [![PyPI-Server](https://img.shields.io/pypi/v/eeharvest.svg)](https://pypi.org/project/eeharvest/) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/eeharvest.svg)](https://anaconda.org/conda-forge/eeharvest) [![Monthly Downloads](https://pepy.tech/badge/eeharvest/month)](https://pepy.tech/project/eeharvest) ![GitHub last commit](https://img.shields.io/github/last-commit/Sydney-Informatics-Hub/eeharvest) An [Agricultural Research Federation] (AgReFed) project, the `eeharvest` package simplifies access to Google Earth Engine and its data catalog with a quartet of convenient methods to collect, process and download data: - `preprocess()`: server-side processing, cloud and shadow masking, image reduction and calculation of spectral indices - `aggregate()`: **🚧(work-in-progress)🚧** perform additional temporal aggregaton on data - `download()`: download data collection(s) to disk without limits on size or number of files - `map()`: preview assets automatically in an interactive map **⚠ WARNING:** `eeharvest` does only a few things, but it does them well. The main objective is to provide a simple, *intuitive* interface to Google Earth Engine that is easy to use and understand for researchers who may *not* have a lot of experience with Python or Google Earth Engine, but they "just want to download some maps". **Most importantly, `eeharvest` is designed to be used with `geodata-harvester` for fully automated and reproducible data extraction and processing**, but we understand the benefits of using it as a standalone package. If you are an advanced user, we recommend that you use the Earth Engine API directly (but see useful add-on packages such as `eemont` and `geemap` in our acknowledgements below). ## Why `eeharvest`? This package is part of the AgReFed [Geodata-Harvester] project which extends the vision of providing Findable, Accessible, Interoperable and Reusable (FAIR) agricultural data (and beyond) to Australian researchers and stakeholders. There are currently three packages that have been produced under AgReFed: - 🐍 `geodata-harvester` ([link]()): a Python package for data extraction and processing from a wide range of data sources in Australia, with support for Google Earth Engine via a dependency on `eeharvest` (see below) - 🐍 `eeharvest`: **this package**, which provides access to Google Earth Engine and is designed to work as a standalone package - **R** `dataharvester` ([link]()): an R package that replicates the functionality of `geodata-harvester`, but with additional support for functional R programming and the tidyverse ## Features - ✅ **Download** from any dataset available on the [Google Earth Engine Data Catalog] - ✅ Perform automatic cloud and shadow **masking** (credit: `eemont`) - ✅ **Scale** and **offset** image bands instantly (credit: `eemont`) - ✅ **Spatial** aggregation/reduction (e.g. median) - ❌ **Temporal** aggregation/reduction (🚧 _work-in-progress_ 🚧) - ✅ Quickly calculate from a vast library of **spectral indices**, e.g. NDVI, BAI (credit: [Awesome Spectral Indices]) - ✅ **Preview** assets instantly using interactive **maps**, including calculated spectral indices (credit: `geemap`) - ✅ **Downlod** any number of image assets with (almost) no size limits - _please be sensible with this feature_ (credit: `geedim`) - ✅ **Automate** _all_ of the above with the use of **YAML** config files [Google Earth Engine Data Catalog]: https://developers.google.com/earth-engine/datasets/catalog [Awesome Spectral Indices]: https://github.com/awesome-spectral-indices/awesome-spectral-indices [geodata-harvester]: https://github.com/Sydney-Informatics-Hub/geodata-harvester ## Examples ```python import eeharvest eeharvest.initialise() # specify collection, coordinates and date range img = eeharvest.collect( collection="LANDSAT/LC08/C02/T1_L2", coords=[149.799, -30.31, 149.80, -30.309], date_min="2019-01-01", date_max="2019-02-01", ) # cloud and shadow masking, spatial aggregation, NDVI calculation img.preprocess(mask_clouds=True, reduce="median", spectral="NDVI") # visualise (optional, but fun) img.map(bands="NDVI") # download to disk (defaults to a "downloads" folder in working directory) img.download(bands="NDVI") ``` ## Installation ### Installing dependencies from conda Before installing the package you may need to install the following packages manually: - [GDAL](https://gdal.org/download.html): to manipulate raster and vector geospatial data - [gcloud CLI](https://cloud.google.com/sdk/docs/install): needed to authenticate to Google servers In most cases, these can be installed through conda-forge (but see alternatives below if not): ```sh conda install -c conda-forge gdal google-cloud-sdk ``` ### Installing dependencies from binaries If conda is somehow not an option, you can install the two dependencies from binaries. For GDAL, use `apt-get` or `brew` (macOS). Clear instructions have been written on the [rasterio](https://rasterio.readthedocs.io/en/latest/installation.html) and [PyPi GDAL](https://pypi.org/project/GDAL/) websites. For the Google Cloud SDK, follow the instructions on the [gcloud CLI](https://cloud.google.com/sdk/docs/install) website. ### Conda - _recommended_ ```sh conda install -c conda-forge eeharvest ``` ### Pip ```sh pip install -U eeharvest ``` <!-- pyscaffold-notes --> ## Attribution and Acknowledgments This software was developed by the **[Sydney Informatics Hub]**, a core research facility of the University of Sydney, as part of the Data Harvesting project for the **[Agricultural Research Federation] (AgReFed)**. AgReFed is supported by the Australian Research Data Commons (ARDC) and the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS). Acknowledgments are an important way for us to demonstrate the value we bring to your research. Your research outcomes are vital for ongoing funding of the Sydney Informatics Hub. If you make use of this software for your research project, please include the following acknowledgment: > This research was supported by the Sydney Informatics Hub, a Core Research > Facility of the University of Sydney, and the Agricultural Research Federation > (AgReFed). ## Credits - [Google Earth Engine API](https://github.com/google/earthengine-api) - Apache License 2.0 - `eemont` [package](https://github.com/davemlz/eemont) - MIT license - `geedim` [package](https://github.com/dugalh/geedim) - Apache License 2.0 - `geemap` [package](https://github.com/giswqs/geemap) - MIT License - [Awesome Spectral Incices](https://github.com/awesome-spectral-indices/awesome-spectral-indices) \- MIT License ## Note This project has been set up using [PyScaffold] 4.3.1 and the [dsproject extension] 0.7.2. For more information see [CONTRIBUTING.md](CONTRIBUTING.md) in this repository. [pyscaffold]: https://pyscaffold.org/ [dsproject extension]: https://github.com/pyscaffold/pyscaffoldext-dsproject [Agricultural Research Federation]: https://www.agrefed.org.au [Sydney Informatics Hub]: https://www.sydney.edu.au/research/facilities/sydney-informatics-hub.html


نیازمندی

مقدار نام
- importlib-resources
- alive-progress
- earthengine-api
- eemont
- geedim
- geemap
- pyyaml
- termcolor
- yamale
- importlib-metadata
- setuptools
- pytest
- pytest-cov
- pytest-sugar


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl eeharvest-1.6.0:

    pip install eeharvest-1.6.0.whl


نصب پکیج tar.gz eeharvest-1.6.0:

    pip install eeharvest-1.6.0.tar.gz