معرفی شرکت ها


eeghdf-0.2.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

eeghdf is a module for reading a writing EEG data into the hdf5 format
ویژگی مقدار
سیستم عامل -
نام فایل eeghdf-0.2.4
نام eeghdf
نسخه کتابخانه 0.2.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Chris Lee-Messer <chris@lee-messer.net>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/eeghdf/
مجوز -
# eeghdf Project to develop a easily accessible format for storing EEG in a way that is easy to access for machine learning. ### Features Features derived from hdf5 format: - hdf5 offers reliable, checksummed and compressed storage of digital EEG which was designed for long-term storage of data - hdf5 is supported widely C, C++, javascript, python, julia, matlab, - eeghdf offers a numpy-like interface to data without requiring the whole file to be loaded in memory - efficient reading (the whole file is not read into memory to access data) - cloud enabled direct streaming from S3 buckets via the rcos3 driver - "self documenting" and extensible - advanced features: parallel readers/single writer, MPI, streaming supported Additional goals/features: - build set of tools to visualize and analyze EEG based upon this format, visualization - easy convertion to other formats: first target is mne-python "raw" format, BIDS-EEG next? ### Alternatives, background research and future goals - looked at edf and neo formats, see [Neurodata Without Borders](https://github.com/NeurodataWithoutBorders). Compare with [XDF](https://github.com/sccn/xdf/). - simplier than neo, but may need more of neo's structures as use grows - [ONE format](https://int-brain-lab.github.io/ONE/one_reference.html) - compare with [MNE](http://martinos.org/mne/stable/index.html) fif format of mne project to evolve ##### future goals - look to support multiple records and different sampling rates - look to add fields for clinical report text - look to add field for montages and electrode geometry - "extension" group ## installation ``` pip install eeghdf ``` #### Simple install for developers This assumes you want to make changes to the eeghdf code. - change to the desired python virtual environment - make sure you have git and git-lfs installed ``` git clone https://github.com/eegml/eeghdf.git cd eeghdf python setup-dev.py develop ``` ### Re-sampling There are many ways to resample signals. In my examples I used an approach based upon libsamplerate because it seemed to give accurate results. Depending on your platform there are many options. Recently I have been suing pytorch based tools a lot, torchaudio has resamplinge tools and librosa is looks very impressive. Installation will vary but on ubuntu 18.04 I did: ``` sudo apt install libsamplerate-dev pip install git+https://github.com/cournape/samplerate/#egg=samplerate ``` Ultimately I will move the resampling code out of this repo. Maybe put it in eegml-signal ## To Do - [x] code to write file, target initial release version is 1000 - [X] initial scripts to convert edf to eeghdf and floating point hdf5 - [x] code to subsample and convert edf -> eeghdf - [ ] code to write back to edf - [x] more visualization code -> push to eegvis - [x] add convenience interface to phys_signal with automagic conversion from digital->phys units - should this use a subclass of numpy? - [ ] add study admin code to record info (do not seem to include this now, e.g. EEG No like V17-105) - [ ] code to clip and create subfiles - [ ] allow patient info to propagate - [ ] hash list/tree of history of file so that can track provenance of waveforms if desired - [ ] clip and maintain correct (relative) times - [ ] consider how to handle derived records: for example the downsampled float32 records "frecord200Hz"


نیازمندی

مقدار نام
- numpy
- h5py
- pandas
- future
- mne>=1.0
- pytest
- dynaconf>=3.0


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl eeghdf-0.2.4:

    pip install eeghdf-0.2.4.whl


نصب پکیج tar.gz eeghdf-0.2.4:

    pip install eeghdf-0.2.4.tar.gz