معرفی شرکت ها


edolab-0.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A command line tool for running experiments with `edo`.
ویژگی مقدار
سیستم عامل -
نام فایل edolab-0.0.6
نام edolab
نسخه کتابخانه 0.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Henry Wilde
ایمیل نویسنده henrydavidwilde@gmail.com
آدرس صفحه اصلی https://github.com/daffidwilde/edolab
آدرس اینترنتی https://pypi.org/project/edolab/
مجوز MIT
# edolab [![PyPI version](https://img.shields.io/pypi/v/edo.svg)](https://pypi.org/project/edo/) ![CI](https://github.com/daffidwilde/edolab/workflows/CI/badge.svg) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3979467.svg)](https://doi.org/10.5281/zenodo.3979467) A command line tool for running experiments with [`edo`](https://github.com/daffidwilde/edo). ## Installation `edolab` is `pip`-installable: ``` $ python -m pip install edolab ``` ## Usage ### Experiment scripts To use `edolab`, you will need to write a Python script configuring the parameters of your experiment. #### Required parameters - `fitness`: A function that takes (at least) an `edo.Individual` instance to be used as the fitness function by `edo` - `distributions`: A list of `edo.distribution.Distribution` subclasses that will be used to create the `edo.Family` instances for `edo` - Variable assignments for all of the essential arguments in `edo.DataOptimiser` except for `families` #### Optional parameters - `root`: A directory to which data should be written (and summarised from) - `processes`: A number of processes for `edo` to use when calculating population fitness - Custom column distribution classes should be defined in the script - If you wish to use a custom `stop` or `dwindle` method then define a subclass of `edo.DataOptimiser` and assign that class to a variable called `optimiser` - Any keyword arguments to pass to `fitness` or the `stop` and `dwindle` methods should be assigned to the corresponding `<func>_kwargs` variable. An example of such a script would be something like this: ```python """ /path/to/experiment/script.py """ import edo import numpy as np from edo.distributions import Uniform class CustomOptimiser(edo.DataOptimiser): """ This is an optimiser with custom stopping and dwindling methods. """ def stop(self, tol): """ Stop if the median fitness is less than `tol` away from zero. """ self.converged = abs(np.median(self.pop_fitness)) < tol def dwindle(self, rate): """ Cut the mutation probability in half every `rate` generations. """ if self.generation % rate == 0: self.mutation_prob /= 2 def fitness(individual, size, seed=0): """ Randomly sample `size` values from an individual and return the minimum. """ np.random.seed(seed) values = individual.dataframe.values.flat sample = np.random.choice(values, size=size) return min(sample) class NegativeUniform(Uniform): """ A copy that only takes negative values. """ name = "NegativeUniform" param_limits = {"bounds": [-1, 0]} hard_limits = {"bounds": [-100, 0]} size = 5 row_limits = [1, 5] col_limits = [1, 2] max_iter = 3 best_prop = 0.5 mutation_prob = 0.5 Uniform.param_limits["bounds"] = [0, 1] distributions = [Uniform, NegativeUniform] optimiser = CustomOptimiser fitness_kwargs = {"size": 3} stop_kwargs = {"tol": 1e-3} dwindle_kwargs = {"rate": 10} ``` For more details on the parameters of `edo`, see its documentation: <https://edo.readthedocs.io> ### Running the experiment Then, to run an experiment with this script do the following: ``` $ edolab run /path/to/experiment/script.py ``` ### Summarising the experiment And to summarise the data (for easy transfer): ``` $ edolab summarise /path/to/experiment/script.py ``` For further details on the commands, use the `--help` flag on the `run` and `summarise` commands. ### A note on reproducibility It is highly recommended that you use a virtual environment when using `edo` in or outside of this command line tool as `edo` uses `pickle` to store various objects created in a run that may not be retrievable with a different version of Python. ## Contributing This tool has been made to be pretty bare and could use some padding out. If you'd like to contribute then make a fork and clone the repository locally: ``` $ git clone https://github.com/<your-username>/edolab.git ``` Install the package and replicate the `conda` environment (or install the development dependencies manually): ``` $ cd edolab $ python setup.py develop $ conda env create -f environment.yml $ conda activate edolab-dev ``` Make your changes and write tests to go with them, ensuring they pass: ``` $ python -m pytest --cov=edolab --cov-fail-under=100 tests ``` Commit, push to your fork and open a pull request!


نیازمندی

مقدار نام
- click
- cloudpickle
>=0.3 edo
- tqdm


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl edolab-0.0.6:

    pip install edolab-0.0.6.whl


نصب پکیج tar.gz edolab-0.0.6:

    pip install edolab-0.0.6.tar.gz