معرفی شرکت ها


edit-distance-1.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Computing edit distance on arbitrary Python sequences.
ویژگی مقدار
سیستم عامل -
نام فایل edit-distance-1.0.6
نام edit-distance
نسخه کتابخانه 1.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ben Lambert
ایمیل نویسنده blambert@gmail.com
آدرس صفحه اصلی https://github.com/belambert/editdistance
آدرس اینترنتی https://pypi.org/project/edit-distance/
مجوز LICENSE.txt
edit_distance ============= ![build](https://github.com/belambert/edit-distance/actions/workflows/build.yml/badge.svg) [![PyPI version](https://badge.fury.io/py/Edit_Distance.svg)](https://badge.fury.io/py/Edit_Distance) [![codecov](https://codecov.io/gh/belambert/edit-distance/branch/main/graph/badge.svg?token=43c8bYhWeL)](https://codecov.io/gh/belambert/edit-distance) Python module for computing edit distances and alignments between sequences. I needed a way to compute edit distances between sequences in Python. I wasn't able to find any appropriate libraries that do this so I wrote my own. There appear to be numerous edit distance libraries available for computing edit distances between two strings, but not between two sequences. This is written entirely in Python. This implementation could likely be optimized to be faster within Python. And could probably be much faster if implemented in C. The library API is modeled after difflib.SequenceMatcher. This is very similar to difflib, except that this module computes edit distance (Levenshtein distance) rather than the Ratcliff and Oberhelp method that Python's difflib uses. difflib "does not yield minimal edit sequences, but does tend to yield matches that 'look right' to people." If you find this library useful or have any suggestions, please send me a message. Installing & uninstalling ------------------------- The easiest way to install is using pip: pip install edit_distance Alternatively you can clone this git repo and install using distutils: git clone git@github.com:belambert/edit_distance.git cd edit_distance python setup.py install To uninstall with pip: pip uninstall edit_distance API usage --------- To see examples of usage, view the [difflib documentation](http://docs.python.org/2/library/difflib.html). Additional API-level documentation is available on [ReadTheDocs](http://edit-distance.readthedocs.io/en/latest/) This requires Python 2.7+ since it uses argparse for the command line interface. The rest of the code should be OK with earlier versions of Python Example API usage: ```python import edit_distance ref = [1, 2, 3, 4] hyp = [1, 2, 4, 5, 6] sm = edit_distance.SequenceMatcher(a=ref, b=hyp) sm.get_opcodes() sm.ratio() sm.get_matching_blocks() ``` Differences from difflib ------------------------ In addition to the `SequenceMatcher` methods, `distance()` and `matches()` methods are provided which compute the edit distance and the number of matches. ```python sm.distance() sm.matches() ``` Even if the alignment of the two sequences is identical to `difflib`, `get_opcodes()` and `get_matching_blocks()` may return slightly different sequences. The opcodes returned by this library represent individual character operations, and thus should never span two or more characters. It's also possible to compute the maximum number of matches rather than the minimum number of edits: ```python sm = edit_distance.SequenceMatcher(a=ref, b=hyp, action_function=edit_distance.highest_match_action) ``` Notes ----- This doesn't implement the 'junk' matching features in difflib. Hacking ------- To run unit tests: python -m unittest To deploy... Contributing and code of conduct -------------------------------- For contributions, it's best to Github issues and pull requests. Proper testing and documentation required. Code of conduct is expected to be reasonable, especially as specified by the [Contributor Covenant](http://contributor-covenant.org/version/1/4/)


نحوه نصب


نصب پکیج whl edit-distance-1.0.6:

    pip install edit-distance-1.0.6.whl


نصب پکیج tar.gz edit-distance-1.0.6:

    pip install edit-distance-1.0.6.tar.gz