معرفی شرکت ها


edgeml-pytorch-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

PyTorch code for ML algorithms for edge devices developed at Microsoft Research India.
ویژگی مقدار
سیستم عامل -
نام فایل edgeml-pytorch-0.3.0
نام edgeml-pytorch
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده edgeml@microsoft.com
آدرس صفحه اصلی https://github.com/Microsoft/EdgeML
آدرس اینترنتی https://pypi.org/project/edgeml-pytorch/
مجوز MIT License
## Edge Machine Learning: Pytorch Library This package includes PyTorch implementations of following algorithms and training techniques developed as part of EdgeML. The PyTorch graphs for the forward/backward pass of these algorithms are packaged as `edgeml_pytorch.graph` and the trainers for these algorithms are in `edgeml_pytorch.trainer`. 1. [Bonsai](https://github.com/microsoft/EdgeML/docs/publications/Bonsai.pdf): `edgeml_pytorch.graph.bonsai` implements the Bonsai prediction graph. The three-phase training routine for Bonsai is decoupled from the forward graph to facilitate a plug and play behaviour wherein Bonsai can be combined with or used as a final layer classifier for other architectures (RNNs, CNNs). See `edgeml_pytorch.trainer.bonsaiTrainer` for 3-phase training. 2. [ProtoNN](https://github.com/microsoft/EdgeML/docs/publications/ProtoNN.pdf): `edgeml_pytorch.graph.protoNN` implements the ProtoNN prediction functions. The training routine for ProtoNN is decoupled from the forward graph to facilitate a plug and play behaviour wherein ProtoNN can be combined with or used as a final layer classifier for other architectures (RNNs, CNNs). The training routine is implemented in `edgeml_pytorch.trainer.protoNNTrainer`. 3. [FastRNN & FastGRNN](https://github.com/microsoft/EdgeML/docs/publications/FastGRNN.pdf): `edgeml_pytorch.graph.rnn` provides various RNN cells --- including new cells `FastRNNCell` and `FastGRNNCell` as well as `UGRNNCell`, `GRUCell`, and `LSTMCell` --- with features like low-rank parameterisation of weight matrices and custom non-linearities. Akin to Bonsai and ProtoNN, the three-phase training routine for FastRNN and FastGRNN is decoupled from the custom cells to enable plug and play behaviour of the custom RNN cells in other architectures (NMT, Encoder-Decoder etc.). Additionally, numerically equivalent CUDA-based implementations `FastRNNCUDACell` and `FastGRNNCUDACell` are provided for faster training. `edgeml_pytorch.graph.rnn`. `edgeml_pytorch.graph.rnn.Fast(G)RNN(CUDA)` provides unrolled RNNs equivalent to `nn.LSTM` and `nn.GRU`. `edgeml_pytorch.trainer.fastmodel` presents a sample multi-layer RNN + multi-class classifier model. 4. [S-RNN](https://github.com/microsoft/EdgeML/docs/publications/SRNN.pdf): `edgeml_pytorch.graph.rnn.SRNN2` implements a 2 layer SRNN network which can be instantied with a choice of RNN cell. The training routine for SRNN is in `edgeml_pytorch.trainer.srnnTrainer`. Usage directions and examples notebooks for this package are provided [here](https://github.com/microsoft/EdgeML/examples/pytorch). ## Installation It is highly recommended that EdgeML be installed in a virtual environment. Please create a new virtual environment using your environment manager ([virtualenv](https://virtualenv.pypa.io/en/stable/userguide/#usage) or [Anaconda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands)). Make sure the new environment is active before running the below mentioned commands. Use pip to install requirements before installing the `edgeml_pytorch` library. Details for cpu based installation and gpu based installation provided below. ### CPU ``` pip install -r requirements-cpu.txt pip install -e . ``` Tested on Python3.6 with >= PyTorch 1.1.0. ### GPU Install appropriate CUDA and cuDNN [Tested with >= CUDA 8.1 and cuDNN >= 6.1] ``` pip install -r requirements-gpu.txt pip install -e . ``` Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT license.


نحوه نصب


نصب پکیج whl edgeml-pytorch-0.3.0:

    pip install edgeml-pytorch-0.3.0.whl


نصب پکیج tar.gz edgeml-pytorch-0.3.0:

    pip install edgeml-pytorch-0.3.0.tar.gz