معرفی شرکت ها


edgar-5.4.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Scrape data from SEC's EDGAR
ویژگی مقدار
سیستم عامل -
نام فایل edgar-5.4.3
نام edgar
نسخه کتابخانه 5.4.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Joey Sham
ایمیل نویسنده sham.joey@gmail.com
آدرس صفحه اصلی https://github.com/joeyism/py-edgar
آدرس اینترنتی https://pypi.org/project/edgar/
مجوز -
# EDGAR A small library to access files from SEC's edgar. ## Installation > pip install edgar ## Example To get a company's latest 5 10-Ks, run ``` python from edgar import Company company = Company("Oracle Corp", "0001341439") tree = company.get_all_filings(filing_type = "10-K") docs = Company.get_documents(tree, no_of_documents=5) ``` or ```python from edgar import Company, TXTML company = Company("INTERNATIONAL BUSINESS MACHINES CORP", "0000051143") doc = company.get_10K() text = TXTML.parse_full_10K(doc) ``` To get all companies and find a specific one, run ``` python from edgar import Edgar edgar = Edgar() possible_companies = edgar.find_company_name("Cisco System") ``` To avoid pull of all company data from sec.gov on Edgar initialization, pass in a local path to the data ``` python from edgar import Edgar edgar = Edgar("/path/to/cik-lookup-data.txt") possible_companies = edgar.find_company_name("Cisco System") ``` To get XBRL data, run ```python from edgar import Company, XBRL, XBRLElement company = Company("Oracle Corp", "0001341439") results = company.get_data_files_from_10K("EX-101.INS", isxml=True) xbrl = XBRL(results[0]) XBRLElement(xbrl.relevant_children_parsed[15]).to_dict() // returns a dictionary of name, value, and schemaRef ``` ## API ### Company ```python Company(name, cik, timeout=10) ``` * name (company name) * cik (company CIK number) * timeout (optional) (default: 10) #### Methods `get_filings_url(self, filing_type="", prior_to="", ownership="include", no_of_entries=100) -> str` Returns a url to fetch filings data * filing_type: The type of document you want. i.e. 10-K, S-8, 8-K. If not specified, it'll return all documents * prior_to: Time prior which documents are to be retrieved. If not specified, it'll return all documents * ownership: defaults to include. Options are include, exclude, only. * no_of_entries: defaults to 100. Returns the number of entries to be returned. Maximum is 100. `get_all_filings(self, filing_type="", prior_to="", ownership="include", no_of_entries=100) -> lxml.html.HtmlElement` Returns the HTML in the form of [lxml.html](http://lxml.de/lxmlhtml.html) * filing_type: The type of document you want. i.e. 10-K, S-8, 8-K. If not specified, it'll return all documents * prior_to: Time prior which documents are to be retrieved. If not specified, it'll return all documents * ownership: defaults to include. Options are include, exclude, only. * no_of_entries: defaults to 100. Returns the number of entries to be returned. Maximum is 100. `get_10Ks(self, no_of_documents=1, as_documents=False) -> List[lxml.html.HtmlElement]` Returns the HTML in the form of [lxml.html](http://lxml.de/lxmlhtml.html) of concatenation of all the documents in the 10-K * no_of_documents (default: 1): numer of documents to be retrieved * When `as_documents` is set to `True`, it returns `-> List[edgar.document.Documents]` a list of [Documents](#documents) `get_document_type_from_10K(self, document_type, no_of_documents=1) -> List[lxml.html.HtmlElement]` Returns the HTML in the form of [lxml.html](http://lxml.de/lxmlhtml.html) of the document within 10-K * document_type: Tye type of document you want, i.e. 10-K, EX-3.2 * no_of_documents (default: 1): numer of documents to be retrieved `get_data_files_from_10K(self, document_type, no_of_documents=1, isxml=False) -> List[lxml.html.HtmlElement]` Returns the HTML in the form of [lxml.html](http://lxml.de/lxmlhtml.html) of the data file within 10-K * document_type: Tye type of document you want, i.e. EX-101.INS * no_of_documents (default: 1): numer of documents to be retrieved * isxml (default: False): by default, things aren't case sensitive and is parsed with `html` in `lxml. If this is True, then it is parsed with `etree` which is case sensitive #### Class Method `get_documents(self, tree: lxml.html.Htmlelement, no_of_documents=1, debug=False, as_documents=False) -> List[lxml.html.HtmlElement]` Returns a list of strings, each string contains the body of the specified document from input * tree: lxml.html form that is returned from Company.getAllFilings * no_of_documents: number of document returned. If it is 1, the returned result is just one string, instead of a list of strings. Defaults to 1. * debug (default: **False**): if **True**, displays the URL and form * When `as_documents` is set to `True`, it returns `-> List[edgar.document.Documents]` a list of [Documents](#documents) ### Edgar Gets all companies from EDGAR `get_cik_by_company_name(company_name: str) -> str`: Returns the CIK if given the exact name or the company `get_company_name_by_cik(cik: str) -> str`: Returns the company name if given the CIK (with the `000`s) `find_company_name(words: str) -> List[str]`: Returns a list of company names by exact word matching `match_company_by_company_name(self, name, top=5) -> List[Dict[str, Any]]`: Returns a list of dictionarys, with company names, CIK, and their fuzzy match score * `top (default: 5)` returns the top number of fuzzy matches. If set to `None`, it'll return the whole list (which is a lot) ### XBRL Parses data from XBRL #### Properties `relevant_children` * get children that are not `context` `relevant_children_parsed` * get children that are not `context`, `unit`, `schemaRef` * cleans tags ### Documents Filing and Documents Details for the SEC EDGAR Form (such as 10-K) ```python Documents(url, timeout=10) ``` #### Properties `url: str`: URL of the document `content: dict`: Dictionary of meta data of the document `content['Filing Date']: str`: Document filing date `content['Accepted']: str`: Document accepted datetime `content['Period of Report']: str`: The date period that the document is for `element: lxml.html.HtmlElement`: The HTML element for the Document (from the url) so it can be further parsed ## Contribution <a href="https://www.buymeacoffee.com/joeyism" target="_blank"><img src="https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png" alt="Buy Me A Coffee" style="height: 41px !important;width: 174px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>


نیازمندی

مقدار نام
- requests
- lxml
- tqdm
- rapidfuzz


نحوه نصب


نصب پکیج whl edgar-5.4.3:

    pip install edgar-5.4.3.whl


نصب پکیج tar.gz edgar-5.4.3:

    pip install edgar-5.4.3.tar.gz