معرفی شرکت ها


ecpick-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Enzyme Commission Number Prediction
ویژگی مقدار
سیستم عامل -
نام فایل ecpick-0.0.1
نام ecpick
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده MINGYU PARK@Sunmoon University
ایمیل نویسنده duveen@duveen.me
آدرس صفحه اصلی https://github.com/datax-lab/ECPICK
آدرس اینترنتی https://pypi.org/project/ecpick/
مجوز -
# ECPICK [![Powered by ](https://img.shields.io/badge/Powered%20by-DataX%20Lab-orange.svg?style=flat&colorA=555&colorB=b42b2c)](https://www.dataxlab.org) [![Powered by ](https://img.shields.io/badge/Powered%20by-CPS%20Lab-orange.svg?style=flat&colorA=555&colorB=007580)](https://www.sunmoon.ac.kr) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ecpick)](https://pypi.org/project/ecpick/) [![PyPI](https://img.shields.io/pypi/v/ecpick?style=flat&colorB=0679BA)](https://pypi.org/project/ecpick/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/ecpick?label=pypi%20downloads)](https://pypi.org/project/ecpick/) [![PyPI - License](https://img.shields.io/pypi/l/ecpick)](https://pypi.org/project/ecpick/) ## Biologically interpretable deep learning enhances trustworthy enzyme commission number prediction and discovers potential motif sites The rapid growth of uncharacterized enzymes and their functional diversity urge accurate and trustworthy computational functional annotation tools. However, current approaches lack trustworthiness for the predictions and model interpretation, limiting model reliability on the multi-label classification problem with thousands of classes. Here, we demonstrate that our novel biologically interpretable deep learning model (ECPICK) provides a robust solution for trustworthy predictions of enzyme commission (EC) numbers with significantly enhanced predictive power and the capability to discover potential motif sites. ECPICK learns complex sequential patterns of amino acids and their hierarchical structures from twenty million proteins to create the EC number predictions. Furthermore, ECPICK identifies significant amino acids that contribute to the prediction in a given protein sequence without multiple sequence alignment, which may match to known motif sites for trustworthy prediction or potential motif sites. Our intensive assessment showed not only outstanding enhancement of predictive performance on the largest databases of Uniprot, PDB, and KEGG, but also a capability to discover new motif sites in microorganisms. ECPICK will be a reliable EC number prediction tool to identify protein functions of an increasing number of uncharacterized enzymes. - **Website**: http://ecpick.dataxlab.org - **Documentation**: https://readthedocs.org/projects/ecpick - **Source code**: https://github.com/datax-lab/ECPICK ## Installation **ECPICK** support Python 3.6+, Additionally, you will need ```biopython```, ```numpy```, ```scikit-learn```, ```torch```, ```tqdm```. However, these packages should be installed automatically when installing this codebase. ### Dependencies+ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ecpick)](https://pypi.org/project/ecpick/) ![PyPI](https://img.shields.io/pypi/v/torch?label=torch) ![PyPI](https://img.shields.io/pypi/v/biopython?label=biopython) ![PyPI](https://img.shields.io/pypi/v/numpy?label=numpy) ![PyPI](https://img.shields.io/pypi/v/scikit-learn?label=scikit-learn) ![PyPI](https://img.shields.io/pypi/v/tqdm?label=tqdm) ```ECPICK``` is available through PyPi and can easily be installed with a pip install ```shell $ pip install ecpick ``` ## Documentation Read the documentation on readthedocs (Getting ready) ## Quick Start ```python from ecpick import ECPICK ecpick = ECPICK() ecpick.predict_fasta(fasta_path='sample.fasta', output_path='output') ``` ## Usage ## Links: - ECPICK Web server: http://ecpick.dataxlab.org ## References Not available yet.


نیازمندی

مقدار نام
==1.78 biopython
==1.23.2 numpy
==1.12.1 torch
==0.13.1 torchvision
==0.12.1 torchaudio
==1.1.2 scikit-learn
==4.64.0 tqdm
- pytest


نحوه نصب


نصب پکیج whl ecpick-0.0.1:

    pip install ecpick-0.0.1.whl


نصب پکیج tar.gz ecpick-0.0.1:

    pip install ecpick-0.0.1.tar.gz