معرفی شرکت ها


econtools-0.3.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Econometrics and other tools
ویژگی مقدار
سیستم عامل -
نام فایل econtools-0.3.2
نام econtools
نسخه کتابخانه 0.3.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Daniel M. Sullivan
ایمیل نویسنده -
آدرس صفحه اصلی http://www.danielmsullivan.com/econtools
آدرس اینترنتی https://pypi.org/project/econtools/
مجوز BSD
# econtools *econtools* is a Python package of econometric functions and convenient shortcuts for data work with [pandas](http://github.com/pydata/pandas) and [numpy](https://github.com/numpy/numpy). Full documentation [here](http://www.danielmsullivan.com/econtools). ## Installation You can install directly from PYPI: ```bash $ pip install econtools ``` Or you can clone from Github and install directly. ```bash $ git clone http://github.com/dmsul/econtools $ cd econtools $ python setup.py install ``` ## Econometrics - OLS, 2SLS, LIML - Option to absorb any variable via within-transformation (a la `areg` in Stata) - Robust standard errors - HAC (`robust`/`hc1`, `hc2`, `hc3`) - Clustered standard errors - Spatial HAC (SHAC, aka Conley standard errors) with uniform and triangle kernels - F-tests by variable name or `R` matrix. - Local linear regression. - WARNING [31 Oct 2019]: Predicted values (yhat and residuals) may not be as expected in transformed regressions (when using fixed effects or using weights). That is, the current behavior is different from Stata. I am looking into this and will post a either a fix or a justification of current behavior in the near future. ```python import econtools import econtools.metrics as mt # Read Stata DTA file df = econtools.read('my_data.dta') # Estimate OLS regression with fixed-effects and clustered s.e.'s result = mt.reg(df, # DataFrame to use 'y', # Outcome ['x1', 'x2'], # Indep. Variables fe_name='person_id', # Fixed-effects using variable 'person_id' cluster='state' # Cluster by state ) # Results print(result.summary) # Print regression results beta_x1 = result.beta['x1'] # Get coefficient by variable name r_squared = result.r2a # Get adjusted R-squared joint_F = result.Ftest(['x1', 'x2']) # Test for joint significance equality_F = result.Ftest(['x1', 'x2'], equal=True) # Test for coeff. equality ``` ## Regression and Summary Stat Tables - `outreg` takes regression results and creates a LaTeX-formatted tabular fragment. - `table_statrow` can be used to add arbitrary statistics, notes, etc. to a table. Can also be used to create a table of summary statistics. - `write_notes` makes it easy to save table notes that depend on your data. ## Misc. Data Manipulation Tools - `stata_merge` wraps `pandas.merge` and adds a lot of Stata's merge niceties like a `'_m'` flag for successfully merge observations. - `group_id` generates an ID based on the variables past (compare `egen group`). - Crosswalks of commonly used U.S. state labels. - State abbreviation to state name (and reverse). - State fips to state name (and reverse). ## Data I/O - `read` and `write`: Use the passed file path's extension to determine which `pandas` I/O method to use. Useful for writing functions that programmatically read DataFrames from disk which are saved in different formats. See examples above and below. - `load_or_build`: A function decorator that caches datasets to disk. This function builds the requested dataset and saves it to disk if it doesn't already exist on disk. If the dataset is already saved, it simply loads it, saving computational time and allowing the use of a single function to both load and build data. ```python from econtools import load_or_build, read @load_or_build('my_data_file.dta') def build_my_data_file(): """ Cleans raw data from CSV format and saves as Stata DTA. """ df = read('raw_data.csv') # Clean the DataFrame return df ``` File type is automatically detected from the passed filename. In this case, Stata DTA from `my_data_file.dta`. - `save_cli`: Simple wrapper for `argparse` that let's you use a `--save` flag on the command line. This lets you run a regression without over-writing the previous results and without modifying the code in any way (i.e., commenting out the "save" lines). In your regression script: ```python from econtools import save_cli def regression_table(save=False): """ Run a regression and save output if `save == True`. """ # Regression guts if __name__ == '__main__': save = save_cli() regression_table(save=save) ``` In the command line/bash script: ```bash python run_regression.py # Runs regression without saving output python run_regression.py --save # Runs regression and saves output ``` ## Requirements - Python 3.6+ - Pandas and its dependencies (Numpy, etc.) - Scipy and its dependencies - Pytables (optional, if you use HDF5 files) - PyTest (optional, if you want to run the tests)


نیازمندی

مقدار نام
>=0.16.0 pandas
>=1.9.2 numpy
- scipy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl econtools-0.3.2:

    pip install econtools-0.3.2.whl


نصب پکیج tar.gz econtools-0.3.2:

    pip install econtools-0.3.2.tar.gz