معرفی شرکت ها


econsieve-0.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Linear and nonlinear Bayesian filters
ویژگی مقدار
سیستم عامل -
نام فایل econsieve-0.0.8
نام econsieve
نسخه کتابخانه 0.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gregor Boehl
ایمیل نویسنده admin@gregorboehl.com
آدرس صفحه اصلی https://github.com/gboehl/econsieve
آدرس اینترنتی https://pypi.org/project/econsieve/
مجوز MIT
EconSieve - Transposed-Ensemble Kalman Filter (TEnKF) and Nonlinear Path-Adjusting Smoother (NPAS) ================================================================================================================ Apart from the smoother (`npas`) and TEnKF, I stole quite some of the code from these two projects: * https://github.com/rlabbe/filterpy * https://github.com/pykalman/pykalman They deserve most of the merits. I just made everything look way more complicated. Sometimes ``filterpy`` was more efficient, sometimes ``pykalman``. Unfortunately the ``pykalman`` project is orphaned. I tweaked something here and there: * treating numerical errors in the UKF covariance matrix by looking for the nearest positive semi-definite matrix * eliminating identical sigma points (yields speedup assuming that evaluation of each point is costly) * extracting functions from classes and compile them using the @njit flag (speedup) * major cleanup NPAS is built from scratch. I barely did any testing as a standalone filter and just always used it in combination with the 'pydsge', where it works very well. Some very rudimentary documentation `can be found here <https://econsieve.readthedocs.io/en/latest/readme.html>`_. Installation with ``pip`` ------------------------------------------------------- Be sure that you are on Python 3.x. Then it's as simple as: .. code-block:: bash pip install econsieve Installation of bleeding-edge version using ``git`` --------------------------------------------------- First install ``git``. Linux users just use their respective repos. Windows users probably use anaconda and can do .. code-block:: bash conda install -c anaconda git in the conda shell `as they kindly tell us here <https://anaconda.org/anaconda/git>`_. Otherwise you can probably `get it here <https://git-scm.com/download/win>`_. Then you can simply do .. code-block:: bash pip install git+https://github.com/gboehl/econsieve If you run it and it complains about missing packages, please let me know so that I can update the `setup.py`! Alternatively you can clone the repository and then from within the cloned folder run (Windows user from the Anaconda Prompt): .. code-block:: bash pip install . Updating -------- The package is updated very frequently (find the history of latest commits `here <https://github.com/gboehl/econsieve/commits/master>`_). I hence recommend pulling and reinstalling whenever something is not working right. Run: .. code-block:: bash pip install --upgrade econsieve Citation -------- **pydsge** is developed by Gregor Boehl to simulate, filter, and estimate DSGE models with the zero lower bound on nominal interest rates in various applications (see [gregorboehl.com](https://gregorboehl.com) for research papers using the package). Please cite it with: .. code-block:: latex @TechReport{boehl2022meth, author={Boehl, Gregor and Strobel, Felix}, title={{Estimation of DSGE Models with the Effective Lower Bound}}, year=2022, type = {CRC 224 Discussion Papers}, institution={University of Bonn and University of Mannheim, Germany} } We appreciate citations for **pydsge** because it helps us to find out how people have been using the package and it motivates further work.


نیازمندی

مقدار نام
- matplotlib
- scipy
- numpy
- numba
- chaospy
>=0.1.13 grgrlib


نحوه نصب


نصب پکیج whl econsieve-0.0.8:

    pip install econsieve-0.0.8.whl


نصب پکیج tar.gz econsieve-0.0.8:

    pip install econsieve-0.0.8.tar.gz