معرفی شرکت ها


ecole-0.8.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extensible Combinatorial Optimization Learning Environments
ویژگی مقدار
سیستم عامل -
نام فایل ecole-0.8.1
نام ecole
نسخه کتابخانه 0.8.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Antoine Prouvost et al.
ایمیل نویسنده -
آدرس صفحه اصلی https://www.ecole.ai
آدرس اینترنتی https://pypi.org/project/ecole/
مجوز BSD-3-Clause
.. image:: https://raw.githubusercontent.com/ds4dm/ecole/master/docs/_static/images/ecole-logo.svg :target: https://www.ecole.ai :alt: Ecole logo :width: 30 % :align: right Ecole ===== .. image:: https://github.com/ds4dm/ecole/actions/workflows/continuous-testing.yml/badge.svg :target: https://github.com/ds4dm/ecole/actions/workflows/continuous-testing.yml :alt: Test and deploy on Github Actions Ecole (pronounced [ekɔl]) stands for *Extensible Combinatorial Optimization Learning Environments* and aims to expose a number of control problems arising in combinatorial optimization solvers as Markov Decision Processes (*i.e.*, Reinforcement Learning environments). Rather than trying to predict solutions to combinatorial optimization problems directly, the philosophy behind Ecole is to work in cooperation with a state-of-the-art Mixed Integer Linear Programming solver that acts as a controllable algorithm. The underlying solver used is `SCIP <https://scip.zib.de/>`_, and the user facing API is meant to mimic the `OpenAI Gym <https://gym.openai.com/>`_ API (as much as possible). .. code-block:: python import ecole env = ecole.environment.Branching( reward_function=-1.5 * ecole.reward.LpIterations() ** 2, observation_function=ecole.observation.NodeBipartite(), ) instances = ecole.instance.SetCoverGenerator() for _ in range(10): obs, action_set, reward_offset, done, info = env.reset(next(instances)) while not done: obs, action_set, reward, done, info = env.step(action_set[0]) Documentation ------------- Consult the `user Documentation <https://doc.ecole.ai>`_ for tutorials, examples, and library reference. Discussions and help -------------------- Head to `Github Discussions <https://github.com/ds4dm/ecole/discussions>`_ for interaction with the community: give and recieve help, discuss intresting envirnoment, rewards function, and instances generators. Installation ------------ Conda ^^^^^ .. image:: https://img.shields.io/conda/vn/conda-forge/ecole?label=version&logo=conda-forge :target: https://anaconda.org/conda-forge/ecole :alt: Conda-Forge version .. image:: https://img.shields.io/conda/pn/conda-forge/ecole?logo=conda-forge :target: https://anaconda.org/conda-forge/ecole :alt: Conda-Forge platforms .. code-block:: bash conda install -c conda-forge ecole All dependencies are resolved by conda, no compiler is required. Pip wheel (binary) ^^^^^^^^^^^^^^^^^^ Currently unavailable. Pip source ^^^^^^^^^^^ .. image:: https://img.shields.io/pypi/v/ecole?logo=python :target: https://pypi.org/project/ecole/ :alt: PyPI version Building from source requires: - A `C++17 compiler <https://en.cppreference.com/w/cpp/compiler_support>`_, - A `SCIP <https://www.scipopt.org/>`__ installation. .. code-block:: bash pip install ecole Other Options ^^^^^^^^^^^^^ Checkout the `installation instructions <https://doc.ecole.ai/py/en/stable/>`_ in the documentation for more installation options. Related Projects ---------------- * `OR-Gym <https://github.com/hubbs5/or-gym>`_ is a gym-like library providing gym-like environments to produce feasible solutions directly, without the need for an MILP solver; * `MIPLearn <https://github.com/ANL-CEEESA/MIPLearn>`_ for learning to configure solvers. Use It, Cite It --------------- .. image:: https://img.shields.io/badge/arxiv-2011.06069-red :target: https://arxiv.org/abs/2011.06069 :alt: Ecole publication on Arxiv If you use Ecole in a scientific publication, please cite the Ecole publication .. code-block:: text @inproceedings{ prouvost2020ecole, title={Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization Solvers}, author={Antoine Prouvost and Justin Dumouchelle and Lara Scavuzzo and Maxime Gasse and Didier Ch{\'e}telat and Andrea Lodi}, booktitle={Learning Meets Combinatorial Algorithms at NeurIPS2020}, year={2020}, url={https://openreview.net/forum?id=IVc9hqgibyB} }


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl ecole-0.8.1:

    pip install ecole-0.8.1.whl


نصب پکیج tar.gz ecole-0.8.1:

    pip install ecole-0.8.1.tar.gz