معرفی شرکت ها


eckity-0.3.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

EC-KitY: Evolutionary Computation Tool Kit in Python.
ویژگی مقدار
سیستم عامل -
نام فایل eckity-0.3.4
نام eckity
نسخه کتابخانه 0.3.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Moshe Sipper, Achiya Elyasaf, Itai Tzruia, Tomer Halperin
ایمیل نویسنده sipper@gmail.com, achiya@bgu.ac.il, itaitz@post.bgu.ac.il, tomerhal@post.bgu.ac.il
آدرس صفحه اصلی https://www.eckity.org
آدرس اینترنتی https://pypi.org/project/eckity/
مجوز GNU GPLv3
![image](https://user-images.githubusercontent.com/62753120/163423530-1c85e43f-48a9-4fbd-827e-f97a1f174db0.png) ![PyPI](https://img.shields.io/pypi/v/eckity) **EC-KitY** is a Python tool kit for doing evolutionary computation, and it is scikit-learn compatible. Currently we have implemented Genetic Algorithm (GA) and tree-based Genetic Programming (GP), but EC-KitY will grow! **EC-KitY** is: - A comprehensive toolkit for running evolutionary algorithms - Written in Python - Can work with or without scikit-learn, i.e., supports both sklearn and non-sklearn modes - Designed with modern software engineering in mind - Designed to support all popular EC paradigms (GA, GP, ES, coevolution, multi-objective, etc'). ### Dependencies For the basic evolution mode, EC-KitY requires: - numpy (>=1.14.6) - pandas (>=0.25.0) - overrides (>= 6.1.0) For sklearn mode, EC-KitY additionally requires: - scikit-learn (>=0.24.2) ### User installation `pip install eckity` ### Documentation API is available [here](https://api.eckity.org) (Work in progress - some modules and functions are not documented yet.) ### Tutorials The tutorials are available [here](https://github.com/EC-KitY/EC-KitY/wiki/Tutorials), walking you through running EC-KitY both in sklearn mode and in non-sklearn mode. ### Examples More examples are in the [examples](https://github.com/EC-KitY/EC-KitY/tree/main/examples "examples") folder. All you need to do is define a fitness-evaluation method, through a `SimpleIndividualEvaluator` sub-class. You can run the examples with ease by opening this [colab notebook](https://colab.research.google.com/drive/1mpr3EGb1rpoK-_zugszQkv1sWVm-ZQiB?usp=sharing). ### Basic example (no sklearn) You can run an EA with just 3 lines of code. The problem being solved herein is simple symbolic regression. Additional information on this problem can be found in the [Symbolic Regression Tutorial](https://github.com/EC-KitY/EC-KitY/wiki/Tutorial:-Symbolic-Regression). ```python from eckity.algorithms.simple_evolution import SimpleEvolution from eckity.subpopulation import Subpopulation from examples.treegp.non_sklearn_mode.symbolic_regression.sym_reg_evaluator import SymbolicRegressionEvaluator algo = SimpleEvolution(Subpopulation(SymbolicRegressionEvaluator())) algo.evolve() print(f'algo.execute(x=2,y=3,z=4): {algo.execute(x=2, y=3, z=4)}') ``` ### Example with sklearn The problem being solved herein is the same problem, but in this case we also involve sklearn compatability - a core feature of EC-KitY. Additional information for this example can be found in the [Sklearn Symbolic Regression Tutorial](https://github.com/EC-KitY/EC-KitY/wiki/Tutorial:-Sklearn-Compatible-Symbolic-Regression). A simple sklearn-compatible EA run: ```python from sklearn.datasets import make_regression from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from eckity.algorithms.simple_evolution import SimpleEvolution from eckity.creators.gp_creators.full import FullCreator from eckity.genetic_encodings.gp.tree.utils import create_terminal_set from eckity.sklearn_compatible.regression_evaluator import RegressionEvaluator from eckity.sklearn_compatible.sk_regressor import SKRegressor from eckity.subpopulation import Subpopulation X, y = make_regression(n_samples=100, n_features=3) terminal_set = create_terminal_set(X) algo = SimpleEvolution(Subpopulation(creators=FullCreator(terminal_set=terminal_set), evaluator=RegressionEvaluator())) regressor = SKRegressor(algo) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) regressor.fit(X_train, y_train) print('MAE on test set:', mean_absolute_error(y_test, regressor.predict(X_test))) ``` ### Feature comparison Here's a comparison table. The full paper is available [here](https://arxiv.org/abs/2207.10367). ![image](https://github.com/EC-KitY/EC-KitY/blob/main/features.JPG?raw=true) ### Authors [Moshe Sipper](http://www.moshesipper.com/ "Moshe Sipper"), [Achiya Elyasaf](https://achiya.elyasaf.net/ "Achiya Elyasaf"), [Itai Tzruia](https://www.linkedin.com/in/itai-tzruia-4a47a91b8/), Tomer Halperin ### Citation Citations are always appreciated 😊: ``` @article{eckity2023, author = {Moshe Sipper and Tomer Halperin and Itai Tzruia and Achiya Elyasaf}, title = {{EC-KitY}: Evolutionary computation tool kit in {Python} with seamless machine learning integration}, journal = {SoftwareX}, volume = {22}, pages = {101381}, year = {2023}, url = {https://www.sciencedirect.com/science/article/pii/S2352711023000778}, } @misc{eckity2022git, author = {Sipper, Moshe and Halperin, Tomer and Tzruia, Itai and Elyasaf, Achiya}, title = {{EC-KitY}: Evolutionary Computation Tool Kit in {Python}}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://www.eckity.org/} } } ``` ### Sample repos using EC-KitY - [EC-KitY-Maze-Example](https://github.com/RonMichal/EC-KitY-Maze-Example/tree/maze_example/examples/vectorga/maze) - [EvolutionTSP](https://github.com/nogazax/EvolutionTSP) - [Solving The 'Nurse Scheduling Problem' With EC-KitY](https://github.com/harelaf/Nurse-Scheduling-Problem)


نیازمندی

مقدار نام
>=1.14.6 numpy
>=6.1.0 overrides
>=0.25.0 pandas


نحوه نصب


نصب پکیج whl eckity-0.3.4:

    pip install eckity-0.3.4.whl


نصب پکیج tar.gz eckity-0.3.4:

    pip install eckity-0.3.4.tar.gz