معرفی شرکت ها


echostream-node-0.3.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

EchoStream library for implementing remote nodes
ویژگی مقدار
سیستم عامل -
نام فایل echostream-node-0.3.9
نام echostream-node
نسخه کتابخانه 0.3.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده EchoStream
ایمیل نویسنده pypi@echo.stream
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/echostream-node/
مجوز -
# echostream-node EchoStream library for implementing remote nodes that can be used in the echostream system. This package supports creating External Nodes and Managed Node Types, and supports the following EchoStream use cases: - An External Node in an External App or Cross Account App that is a stand-alone application or part of another application, using either `threading` or `asyncio`. - An External Node in a Cross Account App that is an AWS Lambda function. This use case only supports `threading`. - A Managed Node Type, using either `threading` or `asyncio` ## Installation ### Python ```bash pip install echostream-node ``` ### AWS Lambda You may use the publiclally provided layer instead of directly installing `echostream-node` in your lambda package. This layer includes `echostream-node` and all of the Python dependencies *except* those built-in to the AWS Lambda environment for Python. The Layer arn is: ``` arn:aws:lambda:{region}:226390263822:layer:echostream-node-{version}:1 ``` where `{version}` is the version of `echostream-node` that you want, with `.` replaced with `_` and `{region}` is the AWS region that your Lambda will run in. Currently, `us-east-1`, `us-east-2`, `us-west-1` and `us-west-2` are supported. For example, for `echostream-node==0.3.7` in the `us-east-1` region the layer arn would be: ``` arn:aws:lambda:us-east-1:226390263822:layer:echostream-node-0_3_7:1 ``` ## Usage ### Configuration To instantiate a Node a number of variables are required. These can be provided either as environment variables or directly on Node creation: | Parameter | Environment Variable | Description | | --- | --- | --- | | `appsync_endpoint` | `APPSYNC_ENDPOINT` | The URL to the EchoStream API endpoint. | | `client_id` | `CLIENT_ID` | The Application Client ID for the App's Cognito Client Application. | | `name` | `NODE` | The Node's name. | | `password` | `PASSWORD` | The password for the App User for the Node's App. | | `tenant` | `TENANT` | The name of the Tenant that the Node is a part of. | | `username` | `USER_NAME` | The name of the App User for the Node's App. | | `user_pool_id` | `USER_POOL_ID` | The User Pool Id for the App's Cognito User Pool. | ### Threading Application Node ```python from signal import SIGHUP, SIGINT, SIGTERM, signal, strsignal from echostream_node import Message from echostream_node.threading import AppNode class MyExternalNode(AppNode): def handle_received_message(self, *, message: Message, source: str) -> None: print(f"Got a message:\n{message.body}") self.audit_message(message, source=source) def signal_handler(self, signum: int, _: object) -> None: print(f"{strsignal(signum)} received, shutting down") self.stop() def start(self) -> None: super().start() signal(SIGHUP, self.signal_handler) signal(SIGINT, self.signal_handler) signal(SIGTERM, self.signal_handler) try: my_external_node = MyExternalNode() my_external_node.start() for i in range(100): message = my_external_node.create_message(str(i)) my_external_node.send_message(message) my_external_node.audit_message(message) my_external_node.join() except Exception: print("Error running node") ``` ### Asyncio Application Node ```python import asyncio import aiorun from echostream_node import Message from echostream_node.asyncio import Node class MyExternalNode(Node): async def handle_received_message(self, *, message: Message, source: str) -> None: print(f"Got a message:\n{message.body}") self.audit_message(message, source=source) async def main(node: Node) -> None: try: await node.start() for i in range(100): message = my_external_node.create_message(str(i)) my_external_node.send_message(message) my_external_node.audit_message(message) await node.join() except asyncio.CancelledError: pass except Exception: print("Error running node") if __name__ == "__main__": aiorun.run(main(MyExternalNode()), stop_on_unhandled_errors=True, use_uvloop=True) ``` ### Cross Account Lambda Node ```python from echostream_node import Message from echostream_node.threading import LambdaNode class MyExternalNode(LambdaNode): def handle_received_message(self, *, message: Message, source: str) -> None: print(f"Got a message:\n{message.body}") self.audit_message(message, source=source) MY_EXTERNAL_NODE = MyExternalNode() def lambda_handler(event, context): MY_EXTERNAL_NODE.handle_event(event) ``` ## Concurrent vs Sequential Message Processing By default, all Nodes created using the package will process messages sequentially. This is normally the behavior that you want, as many messaging protocols require guaranteed ordering and therefore sequential processing within your Nodes. If this is the behavior that you require, nothign special is needed to gain it from `echostream-node`. However, there are use cases where message ordering is not important but processing speed is. In these cases, you may configure your Node upon creation to concurrently process the messages that it receives. ### Making a Threading Application Node Concurrent If your Node inherits from the `echostream_node.threading.AppNode` class you can achieve concurrency using threading. This will create an AppNode that uses the provided `ThreadPoolExecutor` to concurrently process received `Message`s. Note that while you can set the maximum number of workers to less than 10, there is no gain to setting it to more than 10 since Nodes will only process up to 10 messages at a time. ```python from concurrent.futures import ThreadPoolExecutor from echostream_node import Message from echostream_node.threading import AppNode class MyExternalNode(AppNode): def __init__(self) -> None: super().__init__(executor=ThreadPoolExecutor(max_workers=10)) def handle_received_message(self, *, message: Message, source: str) -> None: print(f"Got a message:\n{message.body}") self.audit_message(message, source=source) ``` ### Making a Asyncio Application Node Concurrent If your Node inherits from the `echostream_node.asyncio.Node` you can set the Node to process incoming `Message`s concurrently. There is no setting for the maximum number of tasks; a task is created per received `Message`. ```python import asyncio from echostream_node import Message from echostream_node.asyncio import Node class MyExternalNode(Node): def __init__(self) -> None: super().__init__(concurrent_processing=True) async def handle_received_message(self, *, message: Message, source: str) -> None: print(f"Got a message:\n{message.body}") self.audit_message(message, source=source) ``` ### Making a Lambda Node Concurrent The AWS Lambda platform does not support shared memory, and therefore will only support concurrency via threading. This will create a LambdaNode that uses an optimized (to your Lambda function's resources) `ThreadPoolExecutor` to concurrently process received `Message`s. ```python from echostream_node import Message from echostream_node.threading import LambdaNode class MyExternalNode(LambdaNode): def __init__(self) -> None: super().__init__(concurrent_processing=True) def handle_received_message(self, *, message: Message, source: str) -> None: print(f"Got a message:\n{message.body}") self.audit_message(message, source=source) ``` ## Lambda Nodes and Partial Success Reporting When you connect an Edge's SQS Queue to the AWS Lambda function implementing your Lambda Node, you can choose to Report Batch Item Failures. This allows your Lambda Node to report partial success back to the SQS Queue, but it does require that your Lambda Node operate differently. If you wish to take advantage of this, set `report_batch_item_failures` when you create your Lambda Node. This can be set even if your Node is *not* concurrent processing. ```python from echostream_node import Message from echostream_node.threading import LambdaNode class MyExternalNode(LambdaNode): def __init__(self) -> None: super().__init__(report_batch_item_failures=True) def handle_received_message(self, *, message: Message, source: str) -> None: print(f"Got a message:\n{message.body}") self.audit_message(message, source=source) ``` Full documentation may be found at https://docs.echostream-node.echo.stream.


نیازمندی

مقدار نام
==2.7.0 aws-error-utils
==0.0.2 awsserviceendpoints
==0.0.3 dynamic-function-loader
==0.0.2 echostream-botocore
==3.4.0 gql[aiohttp,requests]
==0.0.1 gql-appsync-cognito-authentication
==0.24.0 httpx
==0.17.0 httpx-auth
==2022.12.0 pycognito
==3.19.1 simplejson


زبان مورد نیاز

مقدار نام
>=3.9 Python


نحوه نصب


نصب پکیج whl echostream-node-0.3.9:

    pip install echostream-node-0.3.9.whl


نصب پکیج tar.gz echostream-node-0.3.9:

    pip install echostream-node-0.3.9.tar.gz