معرفی شرکت ها


ecg-gudb-database-1.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

API for a high precision ECG Database with annotated R peaks (GUDB)
ویژگی مقدار
سیستم عامل -
نام فایل ecg-gudb-database-1.0.6
نام ecg-gudb-database
نسخه کتابخانه 1.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Bernd Porr
ایمیل نویسنده bernd.porr@glasgow.ac.uk
آدرس صفحه اصلی https://github.com/berndporr/ECG-GUDB
آدرس اینترنتی https://pypi.org/project/ecg-gudb-database/
مجوز GPL 3.0
================================================================================================== High precision ECG Database with annotated R peaks, recorded and filmed under realistic conditions ================================================================================================== This is an API which provides transparent online access to the ECG GUDB http://researchdata.gla.ac.uk/716/ without the need of downloading it. DOI: 10.5525/gla.researchdata.716 It contains ECGs from 25 subjects. Each subject was recorded performing 5 different tasks for two minutes: * sitting * a maths test on a tablet * walking on a treadmill * running on a treadmill * using a hand bike The following channels were recorded with two Attys (https://www.attys.tech/) running synchronously: * Einthoven II and III with standard cables and the amplifier worn around the waist * Exercise cheststrap ECG which resembles approximtely V2-V1 with the ECG amplifier directly mounted on the strap * Acceleration in X/Y/Z whith the sensor mounted directly on the chest strap The cheststrap ECG allowed R peak detection even while jogging at a very high precision (+/- one sample). The sampling rate was 250Hz at a resolution of 24 bits. The database contains the unfiltered, DC-coupled signals as originally recorded. In order to be able to link the ECG artefacts to the behaviour of the subject all but one subject gave permission to be filmed and the videos are also part of the database. Installation ============ Simply install via pip or pip3:: pip install ecg_gudb_database pip3 install ecg_gudb_database Usage ===== Check out `usage_example.py` on github which plots the ECG and the heartrate of one subject. Module ------ The module is called `ecg_gudb_database`:: from ecg_gudb_database import GUDb The constructor loads the ECG data of one subject/experiment from github:: ecg_class = GUDb(subject_number, experiment) where `subject_number` is from 0..24 and `experiment` is 'sitting', 'maths', 'walking', 'hand_bike' or 'jogging'. The array `ecg_class.experiments` is an array of all experiments so that one can loop through the different experiments. Optionally, in case you decide later to download the whole dataset from http://researchdata.gla.ac.uk/716/ then specify the absolute path to the dataset with the optional parameter url without the "file:" specifier:: ecg_class = GUDb(subject_number, experiment, url = "/home/bp1/dataset_dataset_716/experiment_data/") Retrieve the ECG data --------------------- The data is available as numpy arrays. The sampling rate is 250Hz for all experiments (`ecg_class.fs`). We have recorded Einthoven and from a chest strap. Einthoven:: ecg_class.einthoven_I, ecg_class.einthoven_I_filt ecg_class.einthoven_II, ecg_class.einthoven_II_filt ecg_class.einthoven_III, ecg_class.einthoven_III_filt Chest strap:: ecg_class.cs_V2_V1, ecg_class.cs_V2_V1_filt where the filtered versions have 50Hz mains and DC removed. R peak annotations ------------------ The two boolean variables `ecg_class.anno_cs_exists` and `ecg_class.anno_cables_exists` tell the user if annotations exist. If yes they can be obtained:: if ecg_class.anno_cs_exists: chest_strap_anno = ecg_class.anno_cs else: print('No chest strap annotations') if ecg_class.anno_cables_exists: cables_anno = ecg_class.anno_cables else: print("No cables annotations") Accelerometer data ------------------ The accelerometer was worn on a standard belt around the subject's waist:: ecg_class.acc_x ecg_class.acc_y ecg_class.acc_z Videos and full dataset for offline use ======================================= Where the participant has consented, there is a video for each of the tasks. Here is an example: https://berndporr.github.io/ECG-GUDB/ The video and ECG data have been synchronised so they start and end at the same time. The full dataset with the videos can be requested here: http://researchdata.gla.ac.uk/716/


نیازمندی

مقدار نام
- numpy
- scipy


نحوه نصب


نصب پکیج whl ecg-gudb-database-1.0.6:

    pip install ecg-gudb-database-1.0.6.whl


نصب پکیج tar.gz ecg-gudb-database-1.0.6:

    pip install ecg-gudb-database-1.0.6.tar.gz