معرفی شرکت ها


easytxt-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Text manipulation and normalization library
ویژگی مقدار
سیستم عامل -
نام فایل easytxt-0.1.2
نام easytxt
نسخه کتابخانه 0.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rok Grabnar
ایمیل نویسنده grabnarrok@gmail.com
آدرس صفحه اصلی https://github.com/sitegroove/easytxt
آدرس اینترنتی https://pypi.org/project/easytxt/
مجوز BSD 3-Clause
================================= Welcome to EasyTXT documentation! ================================= .. image:: https://github.com/sitegroove/easydata/workflows/main/badge.svg?style=flat-square :target: https://github.com/sitegroove/easytxt/actions?query=workflow%3Amain :alt: Build status .. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: code style black .. image:: https://badge.fury.io/py/easytxt.svg?style=flat-square :target: https://pypi.org/project/easytxt/ :alt: pypi package version EasyTXT is a set of high and low level modules to help you with text normalization and manipulation. **PLEASE NOTE:** *EasyTXT is still in alpha stage and certain functionalities could change without deprecation warning, although in the current stage this is less likely and class parameters should remain the same. For now it's discouraged to use it in production (if so, then on your own risk) and it's current usage is for testing purposes only.* .. contents:: Features ======== Some of the most important features that EasyTXT does: * normalizes text * break text into normalized sentences * break text into normalized features * converts HTML to normalized text * text manipulation (allow or deny sentences, etc.) * fixes text encoding * normalizes spaces * converts html table data into sentences or features * html table parser which returns dict of column row info * autocomplete works with any method or function :) * ... There are many more features regarding which, please refer to the documentation bellow. Installation ============ :: pip install easytxt easytxt requires Python 3.8+. parse_text ========== Text examples ------------- In this example lets parse badly structured text and output it into a multiple formats. Please note that calling multiple formats at the same time won't affect performance since sentences are cached and when calling other formats, cached sentences will be instead used in a process. .. code-block:: python >>> from easytxt import parse_text >>> test_text = ' first sentence... Bad ünicode. HTML entities &lt;3!' >>> pt = parse_text(test_text) >>> pt.sentences ['First sentence...', 'Bad ünicode.', 'HTML entities <3!'] Lets just get normalized text. .. code-block:: python >>> pt.text First sentence... Bad ünicode. HTML entities <3! Here is example how to extract features from text. .. code-block:: python >>> test_text = '- color: Black - material: Aluminium. Last Sentence' >>> pt = parse_text(test_text) The text parser will try to automatically detect which are regular sentences or features and show only extracted features when called ``features`` attribute. By default features would get capitalized in a same way as sentences. .. code-block:: python >>> pt.features [('Color', 'Black'), ('Material', 'Aluminium')] Return features dictionary instead a list of tuples. .. code-block:: python >>> pt.features_dict {'Color': 'Black', 'Material': 'Aluminium'} Let's get a value from a specific feature. .. code-block:: python >>> pt.feature('color') Black *We don't need to call ``features`` property first to get value with ``feature`` since this is already done in a background. Features are also cached in a similar way as sentences to increase performance in a case we make multiple calls.* Although regular sentences are ignored when calling ``features`` attr, they can still be returned when calling ``sentences`` or ``text`` attr. .. code-block:: python >>> pt.sentences ['Color: Black.', 'Material: Aluminium.', 'Last Sentence.'] >>> pt.text Color: Black. Material: Aluminium. Last Sentence. HTML examples ------------- In this example we will try to parse html text. There is not special parameter for ``parse_text`` in order to process HTML. Usage is exactly the same as for ``regular text`` since ``html`` is detected and processed automatically. .. code-block:: python >>> test_text = '<p>Some sentence</p> <ul><li>* Easy <b>HD</b> camera </li></ul>' >>> pt = parse_text(test_text) >>> pt.sentences ['Some sentence.', 'Easy HD camera.'] One of the best features of using ``parse_text`` on ``html`` is that it can extract table data into sentences. Lets get more info about this feature through example. .. code-block:: python from easytxt import parse_text test_text_html = ''' <p>Some paragraph demo text.</p> <table> <tbody> <tr> <td scope="row">Type</td> <td>Easybook Pro</td> </tr> <tr> <td scope="row">Operating system</td> <td>etOS</td> </tr> </tbody> </table> <div>Text after <strong>table</strong>.</div> ''' tp = parse_text(test_text_html) print(tp.sentences) In example above following sentences will be printed. .. code-block:: python [ 'Some paragraph demo text.', 'Type: Easybook Pro.', 'Operating system: etOS.', 'Text after table.' ] Although in example we used table without header and with only two columns, ``parse_text`` can easily handle tables with a header and more than two columns. Although it can parse table with infinite number of columns, it's not advised to ``parse_text`` since sentences with table data would become hard to read. To extract data from a table with more complex structure ``parse_table`` is recommended to be used since it can return results as a list of dictionaries. Custom parameters ----------------- **language** If we are parsing text in other language than english then we need to specify language parameter to which language our text belong to in order for sentences to be split properly around abbreviations. .. code-block:: python >>> test_text = 'primera oracion? Segunda oración. tercera oración' >>> pt = parse_text(test_text, language='es') >>> pt.sentences ['Primera oracion?', 'Segunda oración.', 'Tercera oración.'] Please note that currently only ``en`` and ``es`` language parameter values are supported. *Support for more is coming soon...* **css_query** In cases that we provide html string, we can with ``css_query`` parameter select from which html nodes text would get extracted. .. code-block:: python >>> test_text = '<p>Some sentence</p> <ul><li>* Easy <b>HD</b> camera </li></ul>' >>> pt = parse_text(test_text, css_query='p') >>> pt.sentences ['Some sentence.'] **exclude_css** In cases that we provide html string, we can through ``exclude_css`` parameter limit from which html nodes would be excluded from parsing. .. code-block:: python >>> test_text = '<p>Some sentence</p> <ul><li>* Easy <b>HD</b> camera </li></ul>' >>> pt = parse_text(test_text, exclude_css=['p', 'b']) >>> pt.sentences ['Easy camera.'] **allow** We can control which sentences we want to get extracted by providing list of keywords into ``allow`` parameter. Keys are not case sensitive. .. code-block:: python >>> test_text = 'first sentence? Second sentence. Third sentence' >>> pt = parse_text(test_text, allow=['first', 'third']) >>> pt.sentences ['First sentence?', 'Third sentence.'] Regex pattern is also supported as parameter value: .. code-block:: python >>> pt = parse_text(test_text, allow=[r'\bfirst']) **callow** ``callow`` is similar to ``allow`` but with exception that provided keys are case sensitive. Regex pattern as key is also supported. .. code-block:: python >>> test_text = 'first sentence? Second sentence. Third sentence' >>> pt = parse_text(test_text, allow=['First', 'Third']) >>> pt.sentences ['Third sentence.'] **from_allow** We can skip sentences by providing keys in ``from_allow`` parameter. Keys are not case sensitive and regex pattern is also supported. .. code-block:: python >>> test_text = 'First txt. Second txt. Third Txt. FOUR txt.' >>> pt = parse_text(test_text, from_allow=['second']) >>> pt.sentences ['Second txt.', 'Third Txt.', 'FOUR txt.'] **from_callow** ``from_callow`` is similar to ``from_allow`` but with exception that provided keys are case sensitive. Regex pattern as key is also supported. .. code-block:: python >>> test_text = 'First txt. Second txt. Third Txt. FOUR txt.' >>> pt = parse_text(test_text, from_callow=['Second']) >>> pt.sentences ['Second txt.', 'Third Txt.', 'FOUR txt.'] Lets recreate same example as before but with lowercase key. .. code-block:: python >>> test_text = 'First txt. Second txt. Third Txt. FOUR txt.' >>> pt = parse_text(test_text, from_callow=['second']) >>> pt.sentences [] **to_allow** ``to_allow`` is similar to ``from_allow`` but in reverse order. Here are sentences skipped after provided key is found. Keys are not case sensitive and regex pattern is also supported. .. code-block:: python >>> test_text = 'First txt. Second txt. Third Txt. FOUR txt.' >>> pt = parse_text(test_text, to_allow=['four']) >>> pt.sentences ['First txt.', 'Second txt.', 'Third Txt.'] **to_callow** ``to_callow`` is similar to ``to_allow`` but with exception that provided keys are case sensitive. Regex pattern is also supported. .. code-block:: python >>> test_text = 'First txt. Second txt. Third Txt. FOUR txt.' >>> pt = parse_text(test_text, to_callow=['FOUR']) >>> pt.sentences ['First txt.', 'Second txt.', 'Third Txt.'] Lets recreate same example as before but with lowercase key. .. code-block:: python >>> test_text = 'First txt. Second txt. Third Txt. FOUR txt.' >>> pt = parse_text(test_text, to_callow=['four']) >>> pt.sentences ['First txt.', 'Second txt.', 'Third Txt.', 'FOUR txt.'] **deny** We can control which sentences we don't want to get extracted by providing list of keywords into ``deny`` parameter. Keys are not case sensitive and regex pattern is also supported. .. code-block:: python >>> test_text = 'first sentence? Second sentence. Third sentence' >>> pt = parse_text(test_text, deny=['first', 'third']) >>> pt.sentences ['Second sentence.'] **cdeny** ``cdeny`` is similar to ``deny`` but with exception that provided keys are case sensitive. Regex pattern as a key is also supported. .. code-block:: python >>> test_text = 'first sentence? Second sentence. Third sentence' >>> pt = parse_text(test_text, deny=['First', 'Third']) >>> pt.sentences ['First sentence?', 'Second sentence.'] **normalize** By default parameter ``normalize`` is set to ``True``. This means that any bad encoding will be automatically fixed, stops added and line breaks split into sentences. .. code-block:: python >>> from easytxt import parse_text >>> test_text = ' first sentence... Bad ünicode. HTML entities &lt;3!' >>> pt = parse_text(test_text) >>> pt.sentences ['First sentence...', 'Bad ünicode.', 'HTML entities <3!'] Lets try to set parameter ``normalize`` to ``False`` and see what happens. .. code-block:: python >>> from easytxt import parse_text >>> test_text = ' first sentence... Bad ünicode. HTML entities &lt;3!' >>> pt = parse_text(test_text, normalize=False) >>> pt.sentences ['First sentence...', 'Bad ünicode.', 'HTML entities &lt;3!'] **capitalize** By default all sentences will get capitalized as we can see bellow. .. code-block:: python >>> test_text = 'first sentence? Second sentence. third sentence' >>> pt = parse_text(test_text) >>> pt.sentences ['First sentence?', 'Second sentence.', 'third sentence.'] We can disable this behaviour by setting parameter ``capitalize`` to ``False``. .. code-block:: python >>> test_text = 'first sentence? Second sentence. third sentence' >>> pt = parse_text(test_text, capitalize=False) >>> pt.sentences ['first sentence?', 'Second sentence.', 'third sentence.'] **title** We can set our text output to title by setting parameter ``title`` to ``True``. .. code-block:: python >>> test_text = 'first sentence? Second sentence. third sentence' >>> pt = parse_text(test_text, title=True) >>> pt.text 'First Sentence? Second Sentence. Third Sentence' **uppercase** We can set our text output to uppercase by setting parameter ``uppercase`` to ``True``. .. code-block:: python >>> test_text = 'first sentence? Second sentence. third sentence' >>> pt = parse_text(test_text, uppercase=True) >>> pt.sentences ['FIRST SENTENCE?', 'SECOND SENTENCE.', 'THIRD SENTENCE.'] **lowercase** We can set our text output to lowercase by setting parameter ``lowercase`` to ``True``. .. code-block:: python >>> test_text = 'first sentence? Second sentence. third sentence' >>> pt = parse_text(test_text, lowercase=True) >>> pt.text 'first sentence? second sentence. third sentence' **min_chars** By default ``min_chars`` has a value of 5. This means that any sentence that has less than 5 chars, will be filtered out and not seen at the end result. This is done to remove ambiguous sentences, especially when extracting text from html. We can raise or decrease this limit by changing the value of ``min_chars``. **replace_keys** We can replace all chars in a sentences by providing tuple of search key and replacement char in a ``replace_keys`` parameter. Regex pattern as key is also supported and search keys are not case sensitive. .. code-block:: python >>> test_text = 'first sentence! - second sentence. Third' >>> pt = parse_text(test_text, replace_keys=[('third', 'Last'), ('nce!', 'nce?')]) >>> pt.sentences ['First sentence?', 'Second sentence.', 'Last.'] **remove_keys** We can remove all chars in sentences by providing list of search keys in a ``replace_keys`` parameter. Regex pattern as key is also supported and keys are not case sensitive. .. code-block:: python >>> test_text = 'first sentence! - second sentence. Third' >>> pt = parse_text(test_text, remove_keys=['sentence', '!']) >>> pt.sentences ['First.', 'Second.', 'Third.'] **replace_keys_raw_text** We can replace char values before text is split into sentences. This is especially useful if we want to fix text before it's parsed and so that is split into sentences correctly. It accepts ``regex`` as key values in a ``tuple``. Please note that keys are not case sensitive and regex as key is also accepted. Lets first show default result with badly structured text without setting keys into ``replace_keys_raw_text``. .. code-block:: python >>> test_text = 'Easybook pro 15 Color: Gray Material: Aluminium' >>> pt = parse_text(test_text) >>> pt.sentences ['Easybook pro 15 Color: Gray Material: Aluminium.'] As we can see from the result test text is returned as one sentence due to missing stop keys (``.``) between sentences. Lets fix this by adding stop keys into unprocessed text before sentence splitting happens. .. code-block:: python >>> test_text = 'Easybook pro 15 Color: Gray Material: Aluminium' >>> replace_keys = [('Color:', '. Color:'), ('Material:', '. Material:')] >>> pt = parse_text(test_text, replace_keys_raw_text=replace_keys) >>> pt.sentences ['Easybook pro 15.', 'Color: Gray.', 'Material: Aluminium.'] **remove_keys_raw_text** Works similar as ``replace_keys_raw_text``, but instead of providing list of tuples in order to replace chars, here we provide list of chars to remove keys. Lets try first on a sentence without setting keys to ``rremove_keys_raw_text``. Please note that keys are not case sensitive and regex as key is also accepted. .. code-block:: python >>> test_text = 'Easybook pro 15. Color: Gray' >>> pt = parse_text(test_text) >>> pt.sentences ['Easybook pro 15.', 'Color: Gray.'] Text above due to stop key ``.`` was split into two sentences. Lets prevent this by removing color and stop key at the same time and get one sentence instead. .. code-block:: python >>> test_text = 'Easybook pro 15. Color: Gray' >>> pt = parse_text(test_text, remove_keys_raw_text=['. color:']) >>> pt.sentences ['Easybook pro 15 Gray.'] **split_inline_breaks** By default text with chars like ``*``, `` - `` and bullet points would get split into sentences. Example: .. code-block:: python >>> test_text = '- first param - second param' >>> pt = parse_text(test_text) >>> pt.sentences ['First param.', 'Second param.'] In cases when we want to disable this behaviour, we can set parameter ``split_inline_breaks`` to ``False``. .. code-block:: python >>> test_text = '- first param - second param' >>> pt = parse_text(test_text, split_inline_breaks=False) >>> pt.sentences ['- first param - second param.'] Please note that chars like ``.``, ``:``, ``?``, ``!`` are not considered as inline breaks. **inline_breaks** In above example we saw how default char breaks by default work. In cases when we want to split sentences by different char than default one, we can do so by providing list of chars into ``inline_breaks`` parameter. .. code-block:: python >>> test_text = '> first param > second param' >>> pt = parse_text(test_text, inline_breaks=['>']) >>> pt.sentences ['First param.', 'Second param.'] Regex pattern is also supported as parameter value: .. code-block:: python >>> parse_text(test_text, inline_breaks=[r'\b>']) **stop_key** If a sentence is without a stop key at the end, then by default it will automatically be appended ``.``. Let see this in bellow example: .. code-block:: python >>> test_text = 'First feature <br> second feature?' >>> pt = parse_text(test_text) >>> pt.sentences ['First feature.', 'Second feature?'] We can change our default char ``.`` to a custom one by setting our desired char in a ``stop_key`` parameter. .. code-block:: python >>> test_text = 'First feature <br> second feature?' >>> pt = parse_text(test_text, stop_key='!') >>> pt.sentences ['First feature!', 'Second feature?'] **sentence_separator** In cases when we want output in text format, we can change how sentences are merged together. Lets see first default output in example bellow: .. code-block:: python >>> test_text = 'first sentence? Second sentence. Third sentence' >>> pt = parse_text(test_text) >>> pt.text First sentence? Second sentence. Third sentence. Behind the scene simple ``join`` on a list of sentences is performed. Now lets change default value ``' '`` of ``sentence_separator`` to our custom one. .. code-block:: python >>> test_text = 'first sentence? Second sentence. Third sentence' >>> pt = parse_text(test_text, sentence_separator=' > ') >>> pt.text First sentence? > Second sentence. > Third sentence. **text_num_to_numeric** We can convert all alpha chars that describe numeric values to actual numbers by setting ``text_num_to_numeric`` parameter to ``True``. .. code-block:: python >>> test_text = 'First Sentence. Two thousand and three has it. Three Sentences.' >>> pt = parse_text(test_text, text_num_to_numeric=True) >>> pt.sentences ['1 Sentence.', '2003 has it.', '3 Sentences.'] If our text is in different language we need to change language value in our ``language`` parameter. Currently supported languages regarding ``text_num_to_numeric`` are only ``en, es, hi and ru``. Invoked methods --------------- For examples bellow we will use following code as basis: .. code-block:: python >>> test_text = 'First txt. Second txt.' >>> pt = parse_text(test_text) **__str__** Normally we would get text by calling ``text`` property: .. code-block:: python >>> pt.text 'First txt. Second txt.' But we can avoid calling ``text`` property by ``str`` casting. .. code-block:: python >>> str(pt) 'First txt. Second txt.' **__iter__** Normally we would get sentences by calling ``sentence`` property: .. code-block:: python >>> pt.sentences ['First txt.', 'Second txt.'] But we can avoid calling ``sentence`` property and use it directly in iteration. .. code-block:: python >>> [sentence for sentence in pt] ['First txt.', 'Second txt.'] Another alternative: .. code-block:: python >>> list(pt) ['First txt.', 'Second txt.'] **__add__** .. code-block:: python >>> pt + 'hello world' >>> pt.sentences ['First txt.', 'Second txt.', 'Hello World.'] >>> pt + ['Hello', 'World!'] >>> pt.sentences ['First txt.', 'Second txt.', 'Hello', 'World!'] **__radd__** .. code-block:: python >>> 'hello world' + pt >>> pt.sentences ['Hello World.', 'First txt.', 'Second txt.'] >>> ['Hello', 'World!'] + pt >>> pt.sentences ['Hello', 'World!', 'First txt.', 'Second txt.', 'Hello World.'] parse_string ============ ``parse_string`` is a helper method to normalize and manipulate simple texts like titles or similar. It's also more performant than ``parse_text`` since it doesn't perform sentence split, capitalization by default ... Basically it accepts ``str``, ``float``, ``int`` and returns normalized string. Examples -------- In this example lets process text with bad encoding. .. code-block:: python >>> from easytxt import parse_string >>> test_text = 'Easybook Pro 13 &lt;3 ünicode' >>> parse_string(test_text) Easybook Pro 13 <3 ünicode Floats, integers will get transformed to string automatically. .. code-block:: python >>> test_int = 123 >>> parse_string(test_text) '123' >>> test_float = 123.12 >>> parse_string(test_text) '123.12' Custom parameters ----------------- **normalize** As seen in example above, text normalization (bad encoding) is enabled by default through ``normalize`` parameter. Lets set ``normalize`` parameter to ``False`` to disable text normalization. .. code-block:: python >>> test_text = 'Easybook Pro 13 &lt;3 ünicode' >>> parse_string(test_text) Easybook Pro 13 &lt;3 ünicode **capitalize** We can capitalize first character in our string if needed by setting ``capitalize`` parameter to ``True``. By default is set to ``False``. .. code-block:: python >>> test_text = 'easybook PRO 15' >>> parse_string(test_text, capitalize=True) Easybook PRO 15 **title** We can set all first chars in a word uppercase while other chars in a word become lowercase with``title`` parameter set to ``True``. .. code-block:: python >>> test_text = 'easybook PRO 15' >>> parse_string(test_text, title=True) Easybook Pro 15 **uppercase** We can set all chars in our string to uppercase by ``uppercase`` parameter set to ``True``. .. code-block:: python >>> test_text = 'easybook PRO 15' >>> parse_string(test_text, uppercase=True) EASYBOOK PRO 15 **lowercase** We can set all chars in our string to lowercase by ``lowercase`` parameter set to ``True``. .. code-block:: python >>> test_text = 'easybook PRO 15' >>> parse_string(test_text, lowercase=True) easybook pro 15 **replace_keys** We can replace chars/words in a string through ``replace_chars`` parameter. ``replace_chars`` can accept regex pattern as a lookup key and is not case sensitive. .. code-block:: python >>> test_text = 'Easybook Pro 15' >>> parse_string(test_text, replace_keys=[('pro', 'Air'), ('15', '13')]) Easybook Air 13 **remove_keys** We can remove chars/words in a string through ``remove_keys`` parameter. ``remove_keys`` can accept regex pattern as a lookup key and is not case sensitive. .. code-block:: python >>> test_text = 'Easybook Pro 15' >>> parse_string(test_text, remove_keys=['easy', 'pro']) book 15 **split_key** Text can be split by ``split_key``. By default split index is ``0``. .. code-block:: python >>> test_text = 'easybook-pro_13' >>> parse_string(test_text, split_key='-') easybook Lets specify split index through tuple. .. code-block:: python >>> test_text = 'easybook-pro_13' >>> parse_string(test_text, split_key=('-', -1)) pro_13 **split_keys** ``split_keys`` work in a same way as ``split_key`` but instead of single split key it accepts list of keys. .. code-block:: python >>> test_text = 'easybook-pro_13' >>> parse_string(test_text, split_keys=[('-', -1), '_']) pro **take** With ``take`` parameter we can limit maximum number that are shown at the end result. Lets see how it works in example bellow. .. code-block:: python >>> test_text = 'Easybook Pro 13' >>> parse_string(test_text, take=8) Easybook **take** With ``skip`` parameter we can skip ignore defined number of chars. Lets see how it works in example bellow. .. code-block:: python >>> test_text = 'Easybook Pro 13' >>> parse_string(test_text, skip=8) Pro 13 **text_num_to_numeric** We can convert all alpha chars that describe numeric values to actual numbers by setting ``text_num_to_numeric`` parameter to ``True``. .. code-block:: python >>> test_text = 'two thousand and three words for the first time' >>> parse_string(test_text, text_num_to_numeric=True) 2003 words for the 1 time If our text is in different language we need to change language value in our ``language`` parameter. Currently supported languages are only ``en, es, hi and ru``. **fix_spaces** By default all multiple spaces will be removed and left with only single one between chars. Lets test it in our bellow example: .. code-block:: python >>> test_text = 'Easybook Pro 15' >>> parse_string(test_text) Easybook Pro 15 Now lets change ``fix_spaces`` parameter to ``False`` and see what happens. .. code-block:: python >>> test_text = 'Easybook Pro 15' >>> parse_string(test_text, fix_spaces=False) Easybook Pro 15 **escape_new_lines** By default all new line characters are converted to empty space as we can see in example bellow: .. code-block:: python >>> test_text = 'Easybook\nPro\n15' >>> parse_string(test_text) Easybook Pro 15 Now lets change ``escape_new_lines`` parameter to ``False`` and see what happens. .. code-block:: python >>> test_text = 'Easybook\nPro\n15' >>> parse_string(test_text, escape_new_lines=False) Easybook\nPro\n15 **new_line_replacement** If ``escape_new_lines`` is set to ``True``, then by default all new line chars will be replaced by ``' '`` as seen in upper example. We can change this default setting by changing value of ``new_line_replacement`` parameter. .. code-block:: python >>> test_text = 'Easybook\nPro\n15' >>> parse_string(test_text, new_line_replacement='<br>') Easybook<br>Pro<br>15 **add_stop** We can add stop char at the end of the string by setting ``add_stop`` parameter to ``True``. .. code-block:: python >>> test_text = 'Easybook Pro 15' >>> parse_string(test_text, add_stop=True) Easybook Pro 15. By default ``.`` is added but we can provide our custom char if needed. Instead of setting ``add_stop`` parameter to ``True``, we can instead of boolean value provide char as we can see in example bellow. .. code-block:: python >>> test_text = 'Easybook Pro 15' >>> parse_string(test_text, add_stop='!') Easybook Pro 15! parse_table =========== ``parse_table`` parses/extracts data from ``HTML`` table into various formats like ``dict``, ``list`` or just ordinary ``text``. Please note that ``parse_text`` already parses html tables but only in ``list`` or ``text`` format and will extract also text from other nodes if ``css`` selector is not set directly on ``table`` node. Examples -------- In following examples we will use two tables. One with a header and one without it. .. code-block:: python from easytxt import parse_table test_text_html = ''' <p>Some paragraph demo text.</p> <table> <tbody> <tr> <td scope="row">Type</td> <td>Easybook Pro</td> </tr> <tr> <td scope="row">Operating system</td> <td>etOS</td> </tr> </tbody> </table> <div>Text after <strong>table</strong>.</div> ''' pt = parse_table(test_text_html) for row in pt: print(row) In example above following row data will be printed. .. code-block:: python {'Type': 'Easybook Pro'} {'Operating system': 'etOS'} Alternatively we can get data also as sentences. .. code-block:: python print(pt.sentences) [ 'Type: Easybook Pro', 'Operating system: etOS' ] Or a text. .. code-block:: python print(pt.text) * Type: Easybook Pro * Operating system: etOS As we can see, only table html will be extracted and by design other html nodes are ignored, so that any ambiguous text isn't processed. If header isn't explicitly specified with a ``th`` or a ``thead`` nodes, then ``parse_table`` will automatically assume that provided table is without header data and it will take values from first column as header info. Lets make a test on a more complex table with a header and multiple columns. .. code-block:: python from easytxt import parse_table test_text_html = ''' <table> <tr> <th>Type</th> <th>OS</th> <th>Color</th> </tr> <tr> <td>Easybook 15</td> <td>etOS</td> <td>Gray</td> </tr> <tr> <td>Easyphone x1</td> <td>Mobile etOS</td> <td>Black</td> </tr> <tr> <td>Easywatch abc</td> <td>Mobile etOS</td> <td>Blue</td> </tr> </table> ''' pt = parse_table(test_text_html) for row in pt: print(row) In example above following row data will be printed. .. code-block:: python {'Type': 'Easybook 15', 'OS': 'etOS', 'Color': 'Gray'} {'Type': 'Easyphone x1', 'OS': 'Mobile etOS', 'Color': 'Black'} {'Type': 'Easywatch abc', 'OS': 'Mobile etOS', 'Color': 'Blue'} Lets get table data printed as sentences. .. code-block:: python print(pt.sentences) [ 'Type/OS/Color: Easybook 15/etOS/Gray', 'Type/OS/Color: Easyphone x1/Mobile etOS/Black', 'Type/OS/Color: Easywatch abc/Mobile etOS/Blue' ] Or a text. .. code-block:: python print(pt.text) * Type/OS/Color: Easybook 15/etOS/Gray * Type/OS/Color: Easyphone x1/Mobile etOS/Black * Type/OS/Color: Easywatch abc/Mobile etOS/Blue Lets get header keys only. It only works in a table with header nodes. .. code-block:: python print(pt.headers) ['Type', 'OS', 'Color'] Custom parameters ----------------- examples coming soon ... *For now please refer to the source code* Dependencies ============ `EasyTXT` relies on following libraries in some ways: * ftfy_ to fix encoding. * pyquery_ to help with html to text conversion. * number-parser_ to help with numeric text to number conversion .. _ftfy: https://pypi.org/project/ftfy .. _pyquery: https://pypi.org/project/pyquery .. _number-parser: https://pypi.org/project/number-parser Contributing ============ Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways: Report Bugs ----------- Report bugs at https://github.com/sitegroove/easytxt/issues. If you are reporting a bug, please include: * Your operating system name and ``EasyTXT`` package version. * Whole text sample that is being parsed and custom parameters if being set. * Parsed text result in various formats ``text``, ``senteces``, ``features``. Fix Bugs -------- Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it. Implement Features ------------------ Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement it. We encourage you to add new test cases to existing stack. Write Documentation ------------------- ``EasyTXT`` could always use more documentation, whether as part of the official ``EasyTXT`` docs or even on the web in blog posts, articles, tutorials, and such. Submit Feedback --------------- The best way to send feedback is to file an issue at https://github.com/sitegroove/easytxt/issues. If you are proposing a feature: * Explain in detail how it would work. * Keep the scope as narrow as possible, to make it easier to implement. * Remember that contributions are welcome :) Pull Request Guidelines ----------------------- Before you submit a pull request, check that it meets these guidelines: * The pull request should include tests unless PR contains only changes to docs. * If the pull request adds functionality, the docs should be updated. Docs currently live in a README.rst file. * Follow the core developers’ advice which aim to ensure code’s consistency regardless of variety of approaches used by many contributors. * In case you are unable to continue working on a PR, please leave a short comment to notify us. We will be pleased to make any changes required to get it done. Note: *Contributing section was heavily inspired by dateparser package contributing guidelines.*


نیازمندی

مقدار نام
- ftfy
- pyquery
- number-parser


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl easytxt-0.1.2:

    pip install easytxt-0.1.2.whl


نصب پکیج tar.gz easytxt-0.1.2:

    pip install easytxt-0.1.2.tar.gz