معرفی شرکت ها


easyplotly-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Easy Plotly
ویژگی مقدار
سیستم عامل -
نام فایل easyplotly-0.1.3
نام easyplotly
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Marc Wouts
ایمیل نویسنده marc.wouts@gmail.com
آدرس صفحه اصلی https://github.com/mwouts/easyplotly
آدرس اینترنتی https://pypi.org/project/easyplotly/
مجوز MIT
# Easy Plotly [![Build Status](https://travis-ci.com/mwouts/easyplotly.svg?branch=master)](https://travis-ci.com/mwouts/easyplotly) [![codecov.io](https://codecov.io/github/mwouts/easyplotly/coverage.svg?branch=master)](https://codecov.io/github/mwouts/easyplotly?branch=master) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/mwouts/easyplotly.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/mwouts/easyplotly/context:python) [![Pypi](https://img.shields.io/pypi/v/easyplotly.svg)](https://pypi.python.org/pypi/easyplotly) [![pyversions](https://img.shields.io/pypi/pyversions/easyplotly.svg)](https://pypi.python.org/pypi/easyplotly) [![Jupyter Notebook](https://img.shields.io/badge/Binder-Notebook-blue.svg)]( https://mybinder.org/v2/gh/mwouts/easyplotly/master?filepath=README.md) [![GitHub.io](https://img.shields.io/badge/GitHub-HTML-blue.svg)](https://mwouts.github.io/easyplotly) <a class="github-button" href="https://github.com/mwouts/easyplotly" data-icon="octicon-star" data-show-count="true" aria-label="Star mwouts/easyplotly on GitHub">Star</a> This is on-going research on how ploting with [Plotly.py](https://github.com/plotly/plotly.py), especially ploting of hierarchical data, could be made easier. See the outputs of the commands below - tables and plots - in the [HTML export](https://mwouts.github.io/easyplotly/) of this notebook. Or even, open this `README.md` as a notebook and run it interactively on [Binder](https://mybinder.org/v2/gh/mwouts/easyplotly/master?filepath=README.md)! ## Installation Install the `easyplotly` python package with ``` pip install easyplotly ``` ## Sample data Our sample data is the population and life expectancy, per country and region: ```python import world_bank_data as wb import itables.interactive # Collect countries countries = wb.get_countries() region_country = countries[['region', 'name']].rename(columns={'name': 'country'}) # Population & life expectancy region_country['population'] = wb.get_series('SP.POP.TOTL', mrv=1, id_or_value='id', simplify_index=True) region_country['life_expectancy'] = wb.get_series('SP.DYN.LE00.IN', mrv=1, id_or_value='id', simplify_index=True) # Observations restricted to the countries pop_and_exp = region_country.loc[countries.region != 'Aggregates'].set_index(['region', 'country']).sort_index() pop_and_exp ``` ## Sunburst Charts ```python import plotly.graph_objects as go import plotly.io as pio import easyplotly as ep pio.renderers.default = 'notebook_connected' layout = go.Layout(title='World Population and Life Expectancy<br>Data from the World Bank', height=800) ``` Our `Sunburst` function accepts inputs of many types: pandas Series, dictionaries, and list of such objects. If you want, you can redefine `labels`, or add other arguments like `text` - use either a Series with an index identical to that of `values`, or a function that to any tuple `(level0, level1, ... leveln)` associates the corresponding label or value. ```python sunburst = ep.Sunburst(pop_and_exp.population, text=pop_and_exp.life_expectancy) go.Figure(sunburst, layout) ``` ## Treemaps The `Treemap` function works like the `Sunburst` one: ```python treemap = ep.Treemap(pop_and_exp.population, text=pop_and_exp.life_expectancy) go.Figure(treemap, layout) ``` Just like the `Sunburst` function, it also accepts all the arguments supported by the original `go.Sunburst` object. You're even welcome to use the [magic underscore notation](https://plot.ly/python/creating-and-updating-figures/#magic-underscore-notation), as we do below when we set `marker.colors` with `marker_colors`: ```python import numpy as np def average(values, weights): """Same as np.average, but remove nans""" total_obs = 0. total_weight = 0. if isinstance(values, np.float): values = [values] weights = [weights] for x, w in zip(values, weights): xw = x * w if np.isnan(xw): continue total_obs += xw total_weight += w return total_obs / total_weight if total_weight != 0 else np.NaN def life_expectancy(item): """Life expectancy associated to a tuple like (), ('Europe & Central Asia') or ('East Asia & Pacific', 'China')""" sub = pop_and_exp.loc[item] if item else pop_and_exp return average(sub.life_expectancy, weights=sub.population) def text(item): """Return the text associated to a tuple like (), ('Europe & Central Asia') or ('East Asia & Pacific', 'China')""" life_exp = life_expectancy(item) if life_exp > 0: pop = pop_and_exp.population.loc[item].sum() if item else pop_and_exp.population.sum() return 'Population: {:,}<br>Life expectancy: {:.2f}'.format(int(pop), life_exp) treemap = ep.Treemap(pop_and_exp.population, hoverinfo='label+text', text=text, root_label='World', # magic underscore notation marker_colors=life_expectancy, marker_colorscale='RdBu') go.Figure(treemap, layout) ``` ## Sankey Plot Plot links from a dict, or a series with a source/target multiindex: ```python links = {('A', 'B'): 3, ('B', 'C'): 1, ('B', 'D'): 2, ('C', 'A'): 1, ('D', 'A'): 1, ('A', 'D'): 1} go.Figure(ep.Sankey(links)) ``` Plot links from a DataFrame (sources as the index, targets as the columns): ```python import pandas as pd ``` ```python links = pd.DataFrame(1, index=['Source A', 'Source B'], columns=['Target']) go.Figure(ep.Sankey(links)) ``` We conclude the examples with a plot in which the links are a list of pandas Series: ```python region_income = wb.get_countries().query("region != 'Aggregates'").copy() region_income['population'] = wb.get_series('SP.POP.TOTL', mrv=1, id_or_value='id', simplify_index=True) income_lending = region_income.copy() region_income.set_index(['region', 'incomeLevel'], inplace=True) income_lending.set_index(['incomeLevel', 'lendingType'], inplace=True) layout = go.Layout(title='Regions income and lending type<br>Data from the World Bank') sankey = ep.Sankey( link_value=[region_income['population'], income_lending['population']], link_label=[region_income['name'], income_lending['name']]) go.Figure(sankey, layout) ```


نحوه نصب


نصب پکیج whl easyplotly-0.1.3:

    pip install easyplotly-0.1.3.whl


نصب پکیج tar.gz easyplotly-0.1.3:

    pip install easyplotly-0.1.3.tar.gz