معرفی شرکت ها


easymatch-0.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

EasyMatch
ویژگی مقدار
سیستم عامل -
نام فایل easymatch-0.0.0
نام easymatch
نسخه کتابخانه 0.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Weichen Shen
ایمیل نویسنده wcshen1994@163.com
آدرس صفحه اصلی https://github.com/shenweichen/easymatch
آدرس اینترنتی https://pypi.org/project/easymatch/
مجوز Apache-2.0
# DeepCTR [![Python Versions](https://img.shields.io/pypi/pyversions/deepctr.svg)](https://pypi.org/project/deepctr) [![TensorFlow Versions](https://img.shields.io/badge/TensorFlow-1.4+/2.0+-blue.svg)](https://pypi.org/project/deepctr) [![Downloads](https://pepy.tech/badge/deepctr)](https://pepy.tech/project/deepctr) [![PyPI Version](https://img.shields.io/pypi/v/deepctr.svg)](https://pypi.org/project/deepctr) [![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr.svg )](https://github.com/shenweichen/deepctr/issues) <!-- [![Activity](https://img.shields.io/github/last-commit/shenweichen/deepctr.svg)](https://github.com/shenweichen/DeepCTR/commits/master) --> [![Documentation Status](https://readthedocs.org/projects/deepctr-doc/badge/?version=latest)](https://deepctr-doc.readthedocs.io/) [![Build Status](https://travis-ci.org/shenweichen/DeepCTR.svg?branch=master)](https://travis-ci.org/shenweichen/DeepCTR) [![Coverage Status](https://coveralls.io/repos/github/shenweichen/DeepCTR/badge.svg?branch=master)](https://coveralls.io/github/shenweichen/DeepCTR?branch=master) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/d4099734dc0e4bab91d332ead8c0bdd0)](https://www.codacy.com/app/wcshen1994/DeepCTR?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=shenweichen/DeepCTR&amp;utm_campaign=Badge_Grade) [![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#disscussiongroup) [![License](https://img.shields.io/github/license/shenweichen/deepctr.svg)](https://github.com/shenweichen/deepctr/blob/master/LICENSE) <!-- [![Gitter](https://badges.gitter.im/DeepCTR/community.svg)](https://gitter.im/DeepCTR/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) --> DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models.It is compatible with **tensorflow 1.4+ and 2.0+**.You can use any complex model with `model.fit()`and `model.predict()` . Let's [**Get Started!**](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955)) ## Models List | Model | Paper | | :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) | | Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) | | Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) | | Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) | | DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) | | Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) | | Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) | | Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) | | Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) | | xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) | | AutoInt | [arxiv 2018][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) | | Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) | | Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) | | ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) | | FGCNN | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) | | Deep Session Interest Network | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) | | FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) | ## DisscussionGroup Please follow our wechat to join group: - 公众号:**浅梦的学习笔记** - wechat ID: **deepctrbot** ![wechat](./docs/pics/weichennote.png)


نیازمندی

مقدار نام
- h5py
- requests
!=1.7.*,!=1.8.*,>=1.4.0) tensorflow
!=1.7.*,!=1.8.*,>=1.4.0) tensorflow-gpu


زبان مورد نیاز

مقدار نام
>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.* Python


نحوه نصب


نصب پکیج whl easymatch-0.0.0:

    pip install easymatch-0.0.0.whl


نصب پکیج tar.gz easymatch-0.0.0:

    pip install easymatch-0.0.0.tar.gz