معرفی شرکت ها


easy-tensorflow-1.4.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Feature Pipelines for Keras preprocessing layers.
ویژگی مقدار
سیستم عامل -
نام فایل easy-tensorflow-1.4.3
نام easy-tensorflow
نسخه کتابخانه 1.4.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Fernando Nieuwveldt
ایمیل نویسنده fdnieuwveldt@gmail.com
آدرس صفحه اصلی https://github.com/fernandonieuwveldt/easyflow
آدرس اینترنتی https://pypi.org/project/easy-tensorflow/
مجوز -
# EasyFlow: Keras Feature Preprocessing Pipelines ![Keras logo](https://s3.amazonaws.com/keras.io/img/keras-logo-2018-large-1200.png) # Table of Contents 1. [About EasyFlow](#about-EasyFlow) 2. [Motivation](#motivation) 3. [Installation](#installation) 4. [Example](#example) 5. [Tutorials](#tutorials) --- ## About EasyFlow The `EasyFlow` package implements an interface similar to SKLearn's Pipeline API that contains easy feature preprocessing pipelines to build a full training and inference pipeline natively in Keras. All pipelines are implemented as Keras layers. --- ## Motivation There is a need to have a similar interface for Keras that mimics the SKLearn Pipeline API such as `Pipeline`, `FeatureUnion` and `ColumnTransformer`, but natively in Keras as Keras layers. The usual design pattern especially for tabular data is to first do preprocessing with SKLearn and then feed the data to a Keras model. With `EasyFlow` you don't need to leave the Tensorflow/Keras ecosystem to build custom pipelines and your preprocessing pipeline is part of your model architecture. Main interfaces are: * `FeaturePreprocessor`: This layer applies feature preprocessing steps and returns a separate layer for each step supplied. This gives more flexibility to the user and if a more advance network architecture is needed. For example something like a Wide and Deep network. * `FeatureUnion`: This layer is similar to `FeaturePreprocessor` with an extra step that concatenates all layers into a single layer. --- ## Installation: ```bash pip install easy-tensorflow ``` --- ## Example Lets look at a quick example: ```python import pandas as pd import tensorflow as tf from tensorflow.keras.layers import Normalization, StringLookup, IntegerLookup # local imports from easyflow.data import TensorflowDataMapper from easyflow.preprocessing import FeatureUnion from easyflow.preprocessing import ( FeatureInputLayer, StringToIntegerLookup, ) ``` ### Read in data and map as tf.data.Dataset Use the TensorflowDataMapper class to map pandas data frame to a tf.data.Dataset type. ```python file_url = "http://storage.googleapis.com/download.tensorflow.org/data/heart.csv" dataframe = pd.read_csv(file_url) labels = dataframe.pop("target") batch_size = 32 dataset_mapper = TensorflowDataMapper() dataset = dataset_mapper.map(dataframe, labels) train_data_set, val_data_set = dataset_mapper.split_data_set(dataset) train_data_set = train_data_set.batch(batch_size) val_data_set = val_data_set.batch(batch_size) ``` ### Set constants ```python NUMERICAL_FEATURES = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'slope'] CATEGORICAL_FEATURES = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'ca'] # thal is represented as a string STRING_CATEGORICAL_FEATURES = ['thal'] dtype_mapper = { "age": tf.float32, "sex": tf.float32, "cp": tf.float32, "trestbps": tf.float32, "chol": tf.float32, "fbs": tf.float32, "restecg": tf.float32, "thalach": tf.float32, "exang": tf.float32, "oldpeak": tf.float32, "slope": tf.float32, "ca": tf.float32, "thal": tf.string, } ``` ### Setup Preprocessing layer using FeatureUnion This is the main part where `EasyFlow` fits in. We can now easily setup a feature preprocessing pipeline as a Keras layer with only a few lines of code. ```python feature_preprocessor_list = [ ('numeric_encoder', Normalization(), NUMERICAL_FEATURES), ('categorical_encoder', IntegerLookup(output_mode='multi_hot'), CATEGORICAL_FEATURES), ('string_encoder', StringToIntegerLookup(), STRING_CATEGORICAL_FEATURES) ] preprocessor = FeatureUnion(feature_preprocessor_list) preprocessor.adapt(train_data_set) feature_layer_inputs = FeatureInputLayer(dtype_mapper) preprocessing_layer = preprocessor(feature_layer_inputs) ``` ### Set up network ```python # setup simple network x = tf.keras.layers.Dense(128, activation="relu")(preprocessing_layer) x = tf.keras.layers.Dropout(0.5)(x) outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.Model(inputs=feature_layer_inputs, outputs=outputs) model.compile( optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.BinaryCrossentropy(), metrics=[tf.keras.metrics.BinaryAccuracy(name='accuracy'), tf.keras.metrics.AUC(name='auc')]) ``` ### Fit model ```python history=model.fit(train_data_set, validation_data=val_data_set, epochs=10) ``` --- ## Tutorials ### Migrate an Sklearn training Pipeline to Tensorflow Keras: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/fernandonieuwveldt/easyflow/blob/develop/examples/migrating_from_sklearn_to_keras/migrate_sklearn_pipeline.ipynb) * In this notebook we look at ways to migrate an Sklearn training pipeline to Tensorflow Keras. There might be a few reasons to move from Sklearn to Tensorflow. ### Single Input Multiple Output Preprocessor: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/fernandonieuwveldt/easyflow/blob/develop/examples/single_input_multiple_output/single_input_multiple_output_preprocessor.ipynb) * In this example we will show case how to apply different transformations and preprocessing steps on the same feature. What we have here is an example of a Single input Multiple output feature transformation scenario. ### Preprocessing module quick intro: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/fernandonieuwveldt/easyflow/blob/develop/examples/preprocessing_example/preprocessing_example.ipynb) * The `easyflow.preprocessing` module contains functionality similar to what Sklearn does with its `Pipeline`, `FeatureUnion` and `ColumnTransformer` does. This is a quick introduction. ### Tensorflow Feature columns quick intro: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/fernandonieuwveldt/easyflow/blob/develop/examples/feature_column_demo/feature_column_example.ipynb) * Model building Pipeline using `EasyFlow` feature_encoders module. This module is a fusion between Keras layers and Tensorflow feature columns.


نیازمندی

مقدار نام
>=2.7.1 tensorflow


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl easy-tensorflow-1.4.3:

    pip install easy-tensorflow-1.4.3.whl


نصب پکیج tar.gz easy-tensorflow-1.4.3:

    pip install easy-tensorflow-1.4.3.tar.gz