معرفی شرکت ها


easy-ht-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python package for easy Hypothesis Tests
ویژگی مقدار
سیستم عامل -
نام فایل easy-ht-0.0.1
نام easy-ht
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Angelica Lo Duca
ایمیل نویسنده angelica.loduca@yahoo.com
آدرس صفحه اصلی https://github.com/alod83/easy-ht
آدرس اینترنتی https://pypi.org/project/easy-ht/
مجوز -
# Easy Hypothesis Test A Python package for easy Hypothesis Tests ## Authors - [@alod83](https://www.github.com/alod83) ## Installation Install my-project with npm ```bash pip install easy-ht ``` ## Requirements * scipy * statsmodels * jupyter-lab (optional) ## Usage/Examples For examples, check the folder examples, containing some Jupyter Notebooks to get started. ## Documentation The easy_ht package contains a basic class, called `HypothesisTest`. ### HypothesisTest A class used to calculate Hypothesis Tests, including both one sample and two sample tests. **Methods** * **check_normality(self,alpha = 0.05)** Check if samples are follow a normal distribution, using the Shapiro test. * **check_correlation(self, alpha = 0.05)** Check if samples are correlated. It can be used only in two samples tests. * **check_randomness(self, alpha = 0.05, cutoff='mean')** Check if the sample has been built in a random way. * **compare_means(self, value = None, alpha = 0.05, n = 50)** In one sample test, compare the sample to an expected value. In two samples test, compare the mean of the two samples. * **compare_distributions(self, alpha = 0.05, cdf = None, args=(), freq = False)** In one sample test, compare the sample to a distribution. In two samples tests, compare the distributions of the two samples. #### __init__(self,x, y = None, verbose = False, alpha = 0.05): **Parameters** * **x : array_like** the (first) sample to be analysed * **y : array_like, optional** the second sample to be analysed * **verbose : bool, optional, default = False** enable debug messages * **alpha : float, optional, default = 0.05**** the significance level #### check_normality(self,alpha = 0.05) Check if samples follow a normal distribution, according to the Shapiro test. In case of two samples, check if both the samples follow a normal distribution. **Parameters** * **alpha : float, optional, default = 0.05** the significance level **Returns** * bool True, if the sample of both the samples follow a normal distribution. False, otherwise. ### check_correlation(self, alpha = 0.05) Check if samples are correlated. If samples follow a normal distribution, the Pearson Correlation Coefficient is used, otherwise the Spearman Rank Correlation is used. This is a simple test, which does not return the statistics. Correlation is calculated only on the basis of p-value. **Parameters** * **alpha : float, optional, default = 0.05** the significance level **Returns** * bool or None True, if samples are correlated, False otherwise. None is returned in the case that the second sample has not been set. ### check_randomness(self, alpha = 0.05, cutoff='mean'): Check if the sample has been generated in a random way. **Parameters** * **alpha : float, optional, default = 0.05** the significance level * **cutoff : {'mean', 'median'} or number, optional, default = 'mean'** the cutoff to split the data into large and small values. **Returns** * bool True, if the sample has been generated in a random way. False, otherwise. ### compare_means(self, value = None, alpha = 0.05, n = 50) Compare the sample mean to a theoretical value, or compare samples means. If samples follow a normal distribution, the t-test is used if the number of samples is less than n. The z-test, otherwise. If the samples are not normal, the Wilcoxon test is used. **Parameters** * **value : float, optional** the theoretical value to be compared, in case of one sample * **alpha : float, optional, default = 0.05** the significance level * **n : int, optional, default = 50** a number used to discriminate if a sample is small or big. if sample size <= n, t-test is used, otherwise z-test is used. **Returns** * bool True, if the sample means is similar to the theoretical value or the two samples means are similar. False, otherwise. ### compare_distributions(self, alpha = 0.05, cdf = None, args=(), freq = False): Compare the sample distribution to a given cdf (cumulative distribution function), if one sample is provided. The Kolmogorov-Smirnov Test is used. Compare the samples distribution, if two samples are provided. In this case, the Chi Square test is used. **Parameters** * **alpha : float, optional, default = 0.05** the significance level * **cdf : str, array_like or callable** if array_like, it is an array of observations of random variables, and the two-sample test is performed. If a callable, that callable is used to calculate the cdf. If a string, it should be the name of a distribution in scipy.stats, which will be used as the cdf function. * **args : tuple, sequence, optional** distribution parameters, used cdf is string or callables. * **freq : bool, optional, default = False** specify if the sample is an array of frequencies. This is used to discriminate if using the Chi Square Test or Kolmogorov-Smirnov Test. **Returns** * bool or None True, if the sample follows the specified distribution or the two samples follow the same distribution. False, otherwise. If error, return None.


نیازمندی

مقدار نام
- scipy
>=0.10 statsmodels


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl easy-ht-0.0.1:

    pip install easy-ht-0.0.1.whl


نصب پکیج tar.gz easy-ht-0.0.1:

    pip install easy-ht-0.0.1.tar.gz