معرفی شرکت ها


ear-transformers-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Entropy-based Attention Regularization
ویژگی مقدار
سیستم عامل -
نام فایل ear-transformers-1.0.1
نام ear-transformers
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Giuseppe Attanasio
ایمیل نویسنده giuseppeattanasio6@gmail.com
آدرس صفحه اصلی https://github.com/g8a9/ear
آدرس اینترنتی https://pypi.org/project/ear-transformers/
مجوز MIT
# Entropy-based Attention Regularization Frees Unintended Bias Mitigation from Lists EAR is a regularization technique to mitigate uninteded bias while reducing lexical overfitting. It is based on attention entropy maximization. In practice, EAR adds a regularization term at training time to learn tokens with maximal self-attention entropy. ## Project structure The data used in this study is in `data`. Please note that we are not allowed to distribute all the data sets. For some of those, you will need to download it yourselves (instructions below). The code is organized in python scripts (training and evaluation of models), bash scripts to run experiments, and jupyter notebooks. The main files are the following: - `train_bert.py`: use this script to train any bert-based model starting from HuggingFace checkpoints. - `evaluate_model.py`: use this script to evaluate a model either on a test set or a synthetic evaluation set. Please find all the accepted parameters running `python <script_name> --help`. ## Getting started The following are the basic steps to setup our environment and replicate our results. ## Getting the data sets Please follow these instructions to retrive the presented dataset: - Misogyny (EN): the dataset is not publicly available. Please fill [this form](https://docs.google.com/forms/d/e/1FAIpQLSevs4Ji3dNmK5CxyulYG-PxX3U10-RgDrPpMKPRjtI81f0yaQ/viewform) to submit a request to the authors. - Misogyny (IT): the dataset is not publicly available. Please fill [this form](https://forms.gle/uFF3sAtMMqayiDiz9) to submit a request to the authors. - Multilingual and Multi-Aspect (MlMA): the dataset is available online. In `data`, we provide our splitfiles with the additional binary "hate" column used in our experiments. For the sake of simplicty, we have assigned short names to each data set. Please find them and how to use them in [dataset.py](./dataset.py). ## Dependencies You'll need a working Python environment to run the code. The required dependencies are specified in the file `environment.yml`. We use `conda` virtual environments to manage the project dependencies in isolation. Run the following command in the repository folder to create a separate environment and install all required dependencies in it: conda create -n ear python==3.8 conda activate ear pip install -r requirements.txt ## Example EAR can be plugged very easily to HuggingFace models. ```python from transformers import AutoTokenizer, AutoModel import ear tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = AutoModel.from_pretrained("bert-base-uncased") item = tokenizer("Today it's a good day!") outputs = model(**item, output_attentions=True) reg_strength = 0.01 neg_entropy = ear.compute_negative_entropy( inputs=outputs.attentions, attention_mask=item["attention_mask"] ) reg_loss = reg_strength * neg_entropy loss = reg_loss + output.loss ``` ## Reproducing Hate Speech Detection results The [`bash`](bash) folder contains some utility bash scripts useful to run multiple experiments sequentially. They cover the training and evaluation pipeline of all the models tested in the paper. To let everything work as expected, please run them from the parent directory. ### Training Please check out your disk size, these scripts will save two model checkpoints (best and the last one) for every seed. Train **BERT** on the Misogyny (EN) dataset: ```bash ./bash/train_model_10_seeds.sh bert-base-uncased <output_dir> <training_dataset> ``` e.g., `./bash/train_model_10_seeds.sh bert-base-uncased . miso` Train **BERT+EAR** on the Multilingual and Multi-Aspect dataset: ```bash ./bash/train_model_EAR_10_seeds.sh bert-base-uncased <output_dir> <training_dataset> ``` e.g., `./bash/train_model_EAR_10_seeds.sh bert-base-uncased . mlma` Note that: - if you want to take into account class imbalance, you should add the `--balanced_loss` to the parameters passed as command line arguments to python; - for BERT+SOC (Kennedy et al. 2020), we re-use the authors's implementation. Therefore, no training scripts are provided here. ## Testing To evaluate a model, or a folder with several models (different seeds), you have to: 1. run the evaluation on synthetic data. 2. run the evaluation on test data ### Evaluation of bias metrics on synthetic data Here we provide an example to run the evaluation on Madlibs77K synthetic data using a specific checkpoint name (`last.ckpt` in this case). ```bash ./bash/evaluate_folder_madlibs_pattern.sh <in_dir> <out_dir> last.ckpt ``` Analogous script for the other synthetic sets are stored in the folder `./bash`. Namely: - `evaluate_folder_miso_synt.sh` Run the evaluation of all the models within a specified parent directory on Misogyny (EN), synthetic set. - `evaluate_folder_miso-ita_synt.sh` Run the evaluation of all the models within a specified parent directory on Misogyny (IT), synthetic set. ### Evaluation on test data Here we provide an example to run the evaluation on the test set of MlMA. ```bash ./bash/test_folder.sh <in_dir> <out_dir> mlma <src_tokenizer> <ckpt_pattern> ``` Note that evaluation on Misogyny (IT) requires the parameter `--src_tokenizer dbmdz/bert-base-italian-uncased` ## EAR for Biased Term Extraction We provide a Jupyter Notebook where we show how to extract terms with the lowest contextualization, which may induce most of the bias in the model. After having trained at least one model (i.e., you have a model checkpoint), the notebook [`term_extraction.ipynb`](term_extraction.ipynb) will guide you through the discovery of biased terms. ### 🚨 Ethical considerations The process of building the list remains a data-driven approach, which is strongly dependent on the task, collected corpus, term frequencies, and the chosen model. Therefore, the list might either lack specific terms that instead need to be attentioned, or include some that do not strictly perpetrate harm. Because of these twin issues, the resulting lists should not be read as complete or absolute. We would therefore discourage users from simply building and developing models based solely on the extracted terms. We want, instead, the terms to stand as a starting point for debugging and searching for potential bias issues in the task at hand. ## License All source code is made available under a MIT license. See `LICENSE.md` for the full license text. The manuscript text is not open source. The authors reserve the rights to the article content, which is currently submitted for publication.


نیازمندی

مقدار نام
- transformers


نحوه نصب


نصب پکیج whl ear-transformers-1.0.1:

    pip install ear-transformers-1.0.1.whl


نصب پکیج tar.gz ear-transformers-1.0.1:

    pip install ear-transformers-1.0.1.tar.gz