معرفی شرکت ها


e2e-Dutch-0.4.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Coreference resolution with e2e for Dutch
ویژگی مقدار
سیستم عامل -
نام فایل e2e-Dutch-0.4.1
نام e2e-Dutch
نسخه کتابخانه 0.4.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Dafne van Kuppevelt
ایمیل نویسنده d.vankuppevelt@esciencecenter.nl
آدرس صفحه اصلی https://github.com/Filter-Bubble/e2e-Dutch
آدرس اینترنتی https://pypi.org/project/e2e-Dutch/
مجوز -
![Python package](https://github.com/Filter-Bubble/e2e-Dutch/workflows/Python%20package/badge.svg) [![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/Filter-Bubble/e2e-Dutch/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/Filter-Bubble/e2e-Dutch/?branch=master) [![codecov](https://codecov.io/gh/Filter-Bubble/e2e-coref/branch/master/graph/badge.svg)](https://codecov.io/gh/Filter-Bubble/e2e-coref) [![DOI](https://zenodo.org/badge/276878416.svg)](https://zenodo.org/badge/latestdoi/276878416) # e2e-Dutch Code for e2e coref model in Dutch. The code is based on the [original e2e model for English](https://github.com/kentonl/e2e-coref), and modified to work for Dutch. If you make use of this code, please [cite it](#citing-this-code) and also cite [the original e2e paper](https://arxiv.org/abs/1804.05392). This code can be used with a pre-trained model for Dutch, trained on the SoNaR-1 dataset. The model file and documentation can be found at [10.5281/zenodo.5153574](https://zenodo.org/record/5153575) ## Installation Requirements: - Python 3.6 or 3.7 - pip - tensorflow v2.0.0 or higher In this repository, run: ``` pip install -r requirements.txt pip install . ``` Alternatively, you can install directly from Pypi: ``` pip install tensorflow pip install e2e-Dutch ``` ## Quick start - Stanza e2edutch can be used as part of a [Stanza](https://stanfordnlp.github.io/stanza/) pipeline. Coreferences are added similarly to Stanza's entities: * a ___Document___ has an attribute ___clusters___ that is a List of coreference clusters; * a coreference cluster is a List of Stanza ___Spans___. ``` import stanza import e2edutch.stanza nlp = stanza.Pipeline(lang='nl', processors='tokenize,coref') doc = nlp('Dit is een test document. Dit document bevat coreferenties.') print ([[span.text for span in cluster] for cluster in doc.clusters]) ``` Note that you first need to download the stanza models with `stanza.download('nl')`. The e2e-Dutch model files are automatically downloaded to the stanza resources directory when loading the pipeline. ## Quick start A pretrained model is available to download: ``` python -m e2edutch.download [-d DATAPATH] ``` This downloads the model files, the default location is the `data` directory inside the python package location. It can also be set manually with the `DATAPATH` argument, or by specifying the enviornment vairable `E2E_HOME`. The pretrained model can be used to predict coreferences on a conll 2012 files, jsonlines files, [NAF files](https://github.com/newsreader/NAF) or plain text files (in the latter case, the stanza package will be used for tokenization). ``` python -m e2edutch.predict.py [-h] [-o OUTPUT_FILE] [-f {conll,jsonlines,naf}] [-m MODEL] [-c WORD_COL] [--cfg_file CFG_FILE] [--model_cfg_file MODEL_CFG_FILE] [-v] input_filename positional arguments: input_filename optional arguments: -h, --help show this help message and exit -o OUTPUT_FILE, --output_file OUTPUT_FILE -f {conll,jsonlines,naf}, --format_out {conll,jsonlines,naf} -m MODEL, --model MODEL model name -c WORD_COL, --word_col WORD_COL --cfg_file CFG_FILE config file --model_cfg_file MODEL_CFG_FILE model config file -v, --verbose ``` The user-specific configurations (such as data directory, data files, etc) can be provided in a separate config file, the defaults are specified in `cfg/defaults.conf`. The options ` model_cfg_file` and `model` are relevant when you want to use a user-specified model instead of the pretrained model to predict (see the section below on how to train a model). ## Train your own model To train a new model: - Make sure the model config file (default: `e2edutch/cfg/models.conf`) describes the model you wish to train - Make sure your config file (default: `e2edutch/cfg/defaults.conf`) includes the data files you want to use for training - Run `scripts/setup_train.sh e2edutch/cfg/defaults.conf`. This script converts the conll2012 data to jsonlines files, and caches the word and contextualized embeddings. - If you want to enable the use of a GPU, set the environment variable: ```bash export GPU=0 ``` - Run the training script: ```bash python -m e2edutch.train <model-name> ``` ## Citing this code If you use this code in your research, please cite it as follows: ``` @misc{YourReferenceHere, author = { Dafne van Kuppevelt and Jisk Attema }, title = {e2e-Dutch}, doi = {10.5281/zenodo.4146960}, url = {https://github.com/Filter-Bubble/e2e-Dutch} } ``` As the code is largely based on [original e2e model for English](https://github.com/kentonl/e2e-coref), please make sure to also cite [the original e2e paper](https://arxiv.org/abs/1804.05392).


نیازمندی

مقدار نام
>=2.0.0 tensorflow
- h5py
- pyhocon
- scipy
- scikit-learn
<=1.7.1 torch
<=3.5.1 transformers
- KafNafParserPy
- stanza
- sphinx
- m2r2


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl e2e-Dutch-0.4.1:

    pip install e2e-Dutch-0.4.1.whl


نصب پکیج tar.gz e2e-Dutch-0.4.1:

    pip install e2e-Dutch-0.4.1.tar.gz