معرفی شرکت ها


dysregnet-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DysRegNet
ویژگی مقدار
سیستم عامل -
نام فایل dysregnet-0.0.3
نام dysregnet
نسخه کتابخانه 0.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zakaria Louadi, olga lazareva
ایمیل نویسنده zakaria.louadi@tum.de, olga.lazareva@tum.de
آدرس صفحه اصلی https://github.com/biomedbigdata/DysRegNet_package
آدرس اینترنتی https://pypi.org/project/dysregnet/
مجوز GPLv3
# DysRegNet package DysRegNet, is a method for inferring patient-specific regulatory alterations (dysregulations) from gene expression profiles. DysRegNet uses linear models to account for confounders and residual-derived z-scores to assess significance. ## Installation To install the package from PyPI please run: `pip install dysregnet` or you can install it from git: `git clone https://github.com/biomedbigdata/DysRegNet_package.git && cd DysRegNet_package` `python setup.py install` ## Data input The inputs of the package are the following Pandas DataFrame object: - expression_data - Gene expression matrix with the format: patients as rows (first column - patients/samples ids), and genes as columns. - GRN - Gene Regulatory Network (GRN) with two columns in the following order ['TF', 'target']. - meta - Metadata with the first column containing patients/samples ids and other columns for the condition and the covariates. The patients id or samples ids must be the same in the "expression_data" and "meta". Additionally, gene names or ids must match the ones in the "GRN" DataFrame. In the condition column of the meta DataFrame, the control samples should be encoded as 0 and case samples as 1. GRN network should be provided a prior, You can either use an experimental validated GRN or learn it from control samples, we recommend using software like [arboreto](https://github.com/aertslab/arboreto), since you can use its output directly to DysRegNet. ## Parameters Additionally, you can provide the following parameters: - conCol: Column name for the condition in the meta DataFrame. - CatCov: List of categorical variable names. They should match the name of their columns in the meta Dataframe. - ConCov: List of continuous covariates. They should match the name of their columns in the meta Dataframe. - zscoring: Boolean, default: True. zscoring of expression data (if needed). - bonferroni_alpha:P-value threshold for multiple testing correction - normaltest: Boolean. If True, Run a normality test for residuals "scipy.stats.normaltest". If residuals are not normal, the edge will not be considered in the analysis. - normaltest_alpha: p-value threshold for normaltest (if True). - R2_threshold: R-squared (R2) threshold from 0 to 1 (optional). If the fit is weaker, the edge will not be considered in the analysis. - direction_condition: Boolean. If True: only include dysregulation that are relevalant for the interactions (down regulation of an activation or up regulation of a supressions). Please check the paper for more details. ## Get Started Please note, that the functions are annotated with dockstrings for more details. Import the package and pandas: ```python import dysregnet import pandas as pd ``` Define the confounding variables or the design matrix ```python # The condition column conCol='condition' # categorical variable columns in meta dataframe. # these columns will be transformed to variables for regression CatCov=['race','gender'] # continuous variable columns in meta dataframe. ConCov=['birth_days_to'] ``` Run DysRegNet ```python data=dysregnet.run(expression_data=expr, meta=meta, GRN=grn, conCol=conCol CatCov=CatCov, ConCov=ConCov, direction_condition=True, normaltest=True, R2_threshold=.2 ) # results table data.get_results() # or a binary result data.get_results_binary() ``` The expected run time for the installation and running the demo dataset on a "normal" desktop computer is around 3~5 minutes. ## The output The package output a DataFrame that represents patient-specific dysregulated edges. The columns represent edges and the rows patient ids. In the result table, a value of 0 means that the edge is not significantly dysregulated (different from control samples). Otherwise, the z-score is reported, with a positive in case of activation and a negative sign in case of repression (different than the sign of the residual). The method "get_results_binary()", outputs binarized dysregulations instead of z-scores. ## Example A simple example for running DysRegNet: ([Notebook](https://github.com/biomedbigdata/DysRegNet_package/blob/main/test.ipynb)/[Google Colab](https://colab.research.google.com/github/biomedbigdata/DysRegNet_package/blob/main/test.ipynb)). If you want to eun the exact demo. You will need to download the demo dataset and extract the files into test dataset/ Link: https://figshare.com/ndownloader/files/35142652 ## Cite "DysRegNet: Patient-specific and confounder-aware dysregulated network inference" Olga Lazareva*, Zakaria Louadi*, Johannes Kersting, Jan Baumbach, David B. Blumenthal, Markus List. bioRxiv 2022.04.29.490015; doi: https://doi.org/10.1101/2022.04.29.490015. * equal first-authors


نیازمندی

مقدار نام
- pandas
>=1.19 numpy
- scipy
- statsmodels
- tqdm
- sklearn


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl dysregnet-0.0.3:

    pip install dysregnet-0.0.3.whl


نصب پکیج tar.gz dysregnet-0.0.3:

    pip install dysregnet-0.0.3.tar.gz