معرفی شرکت ها


dynts-0.4.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Quantitative financial timeseries analysis
ویژگی مقدار
سیستم عامل -
نام فایل dynts-0.4.1
نام dynts
نسخه کتابخانه 0.4.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Luca Sbardella
ایمیل نویسنده luca@quantmind.com
آدرس صفحه اصلی http://github.com/quantmind/dynts/
آدرس اینترنتی https://pypi.org/project/dynts/
مجوز BSD
A statistic package for python with enphasis on timeseries analysis. Built around numpy_, it provides several back-end timeseries classes including R-based objects via rpy2_. It is shipped with a domain specific language for timeseries analysis and manipulation built on to of ply_. It requires Python 2.6 and up, including Python 3 versions. -- :Documentation: http://packages.python.org/dynts/ :Dowloads: http://pypi.python.org/pypi/dynts/ :Source: http://github.com/quantmind/dynts :Keywords: timeseries, quantitative, finance, statistics, numpy, R, web -- .. contents:: :local: Timeserie Object ======================== To create a timeseries object directly:: >>> from dynts import timeseries >>> ts = timeseries('test') >>> ts.type 'zoo' >>> ts.name 'test' >>> ts TimeSeries:zoo:test >>> str(ts) 'test' DSL ======= At the core of the library there is a Domain-Specific-Language (DSL_) dedicated to timeserie analysis and manipulation. DynTS makes timeserie manipulation easy and fun. This is a simple multiplication:: >>> import dynts >>> e = dynts.parse('2*GOOG') >>> e 2.0 * goog >>> len(e) 2 >>> list(e) [2.0, goog] >>> ts = dynts.evaluate(e).unwind() >>> ts TimeSeries:zoo:2.0 * goog >>> len(ts) 251 Requirements ===================== There are few requirements that must be met: * python_ 2.6 up to python 3.2. * numpy_ version 1.5.1 or higher for arrays and matrices. * ply_ version 3.3 or higher, the building block of the DSL_. * ccy_ for date and currency manipulation. R backend =============================== Depending on the back-end used, additional dependencies need to be met. For example, there are back-ends depending on the following R packages: * rpy2_ if an R_ TimeSeries back-end is used (default). * zoo_ and PerformanceAnlytics_ for the ``zoo`` back-end (currently the default one) * timeSeries_ for the ``rmetrics`` back-end Installing rpy2_ on Linux is straightforward, on windows it requires the `python for windows`__ extension library. Optional Requirements =============================== * cython_ for performance. The library is not strictly dependent on cython, however its usage is highly recommended. If available several python modules will be replaced by more efficient compiled C code. * xlwt_ to create spreadsheet from timeseries. * matplotlib_ for plotting. * djpcms_ for the ``web.views`` module. __ http://sourceforge.net/projects/pywin32/files/ .. _running-tests: Running Tests ================= There are three types of tests available: * ``regression`` for unit and regression tests. * ``profile`` for analysing performance of different backends and impact of cython_. * ``bench`` same as ``profile`` but geared towards speed rather than profiling. From the distribution directory type:: python runtests.py This will run by default the regression tests. To run a profile test type:: python runtests.py -t profile <test-name> where ``<test-name>`` is the name of a profile test. To obtain a list of available tests for each test type, run:: python runtests.py --list for regression, or:: python runtests.py -t profile --list for profile, or:: python runtests.py -t bench --list from benchmarks. If you access the internet behind a proxy server, pass the ``-p`` option, for example:: python runtests.py -p http://myproxy.com:80 It is needed since during tests some data is fetched from google finance. To access coverage of tests you need to install the coverage_ package and run the tests using:: coverage run runtests.py and to check out the coverage report:: coverage report -m Kudos =========== * numpy_ developers. Community ================= Trying to use an IRC channel **#dynts** on ``irc.freenode.net`` (you can use the webchat at http://webchat.freenode.net/). If you find a bug or would like to request a feature, please `submit an issue`__. __ http://github.com/quantmind/dynts/issues .. _numpy: http://numpy.scipy.org/ .. _ply: http://www.dabeaz.com/ply/ .. _rpy2: http://rpy.sourceforge.net/rpy2.html .. _DSL: http://en.wikipedia.org/wiki/Domain-specific_language .. _R: http://www.r-project.org/ .. _ccy: http://code.google.com/p/ccy/ .. _zoo: http://cran.r-project.org/web/packages/zoo/index.html .. _PerformanceAnlytics: http://cran.r-project.org/web/packages/PerformanceAnalytics/index.html .. _timeSeries: http://cran.r-project.org/web/packages/timeSeries/index.html .. _Python: http://www.python.org/ .. _xlwt: http://pypi.python.org/pypi/xlwt .. _matplotlib: http://matplotlib.sourceforge.net/ .. _djpcms: http://djpcms.com .. _coverage: http://nedbatchelder.com/code/coverage/ .. _cython: http://www.cython.org/


نحوه نصب


نصب پکیج whl dynts-0.4.1:

    pip install dynts-0.4.1.whl


نصب پکیج tar.gz dynts-0.4.1:

    pip install dynts-0.4.1.tar.gz