معرفی شرکت ها


dynonet-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

dynoNet: A neural network architecture for learning dynamical systems
ویژگی مقدار
سیستم عامل -
نام فایل dynonet-0.1.1
نام dynonet
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Marco Forgione and Dario Piga
ایمیل نویسنده marco.forgione1986@gmail.com
آدرس صفحه اصلی https://github.com/forgi86/dynonet
آدرس اینترنتی https://pypi.org/project/dynonet/
مجوز MIT
# dynoNet: A neural network architecture for learning dynamical systems This repository contains the Python code to reproduce the results of the paper [dynoNet: A neural network architecture for learning dynamical systems](https://arxiv.org/pdf/2006.02250.pdf) by Marco Forgione and Dario Piga. In this work, we introduce the linear dynamical operator as a differentiable layer compatible with back-propagation-based training. The operator is parametrized as a rational transfer function and thus can represent an infinite impulse response (IIR) filtering operation, as opposed to the Convolutional layer of 1D-CNNs that is equivalent to finite impulse response (FIR) filtering. In the dynoNet architecture, linear dynamical operators are combined with static (i.e., memoryless) non-linearities which can be either elementary activation functions applied channel-wise; fully connected feed-forward neural networks; or other differentiable operators. ![dense_dynonet](doc/dense_dynonet.png "A dense neural network vs. a dynoNet") A 15-min presentation about dynoNet is available [here](https://www.youtube.com/watch?v=SrrlhGPLBrA&t=55s). # Folders: * [dynonet](src/dynonet): PyTorch implementation of the linear dynamical operator (aka G-block in the paper) used in dynoNet * [examples](examples): examples using dynoNet for system identification * [util](util): definition of metrics R-square, RMSE, fit index * [doc](doc): paper & slides Three [examples](examples) discussed in the paper are: * [WH2009](examples/WH2009): A circuit with Wiener-Hammerstein behavior. Experimental dataset from http://www.nonlinearbenchmark.org * [BW](examples/BW): Bouc-Wen. A nonlinear dynamical system describing hysteretic effects in mechanical engineering. Experimental dataset from http://www.nonlinearbenchmark.org * [EMPS](examples/EMPS): A controlled prismatic joint (Electro Mechanical Positioning System). Experimental dataset from http://www.nonlinearbenchmark.org For the [WH2009](examples/WH2009) example, the main scripts are: * ``WH2009_train.py``: Training of the dynoNet model * ``WH2009_test.py``: Evaluation of the dynoNet model on the test dataset, computation of metrics. Similar scripts are provided for the other examples. NOTE: the original data sets are not included in this project. They have to be manually downloaded from http://www.nonlinearbenchmark.org and copied in the data sub-folder of the example. # Software requirements: Simulations were performed on a Python 3.7 conda environment with * numpy * scipy * matplotlib * pandas * pytorch (version 1.4) These dependencies may be installed through the commands: ``` conda install numpy scipy pandas matplotlib conda install pytorch torchvision cudatoolkit=10.2 -c pytorch ``` # Local installation: ## From PyPI Type in terminal: ``` pip install dynonet ``` This will install the latest stable version packaged on PyPI: https://pypi.org/project/dynonet/ ## From a local copy of this repository Navigate to a local copy of this repository, where setup.py and setup.cfg are located. Then, type in terminal: ``` pip install -e . ``` # Citing If you find this project useful, we encourage you to * Star this repository :star: * Cite the [paper](https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.3216) ``` @article{forgione2021dyno, title={\textit{dyno{N}et}: A neural network architecture for learning dynamical systems}, author={Forgione, M. and Piga, D.}, journal={International Journal of Adaptive Control and Signal Processing}, volume={35}, number={4}, pages={612--626}, year={2021}, publisher={Wiley} } ```


نیازمندی

مقدار نام
>=1.19.4 numpy
>=1.5.4 scipy
>=3.3.3 matplotlib
>=1.1.4 pandas
>=1.4 torch


نحوه نصب


نصب پکیج whl dynonet-0.1.1:

    pip install dynonet-0.1.1.whl


نصب پکیج tar.gz dynonet-0.1.1:

    pip install dynonet-0.1.1.tar.gz