معرفی شرکت ها


dynkin-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A toolkit for 3D dynamics and kinematics
ویژگی مقدار
سیستم عامل -
نام فایل dynkin-0.2.1
نام dynkin
نسخه کتابخانه 0.2.1
نگهدارنده ['Fredrik Olsson']
ایمیل نگهدارنده ['freol@outlook.com']
نویسنده Fredrik Olsson
ایمیل نویسنده freol@outlook.com
آدرس صفحه اصلی https://github.com/freol35241/pydynkin
آدرس اینترنتی https://pypi.org/project/dynkin/
مجوز MIT
# pydynkin - A python version of `dynkin` [![PyPI version shields.io](https://img.shields.io/pypi/v/dynkin.svg)](https://pypi.python.org/pypi/dynkin/) ![](https://github.com/freol35241/pydynkin/workflows/dynkin/badge.svg) [![codecov](https://codecov.io/gh/freol35241/pydynkin/branch/master/graph/badge.svg)](https://codecov.io/gh/freol35241/pydynkin) A toolkit for 3D dynamics and kinematics of rigid bodies using the YPR euler angle convention. [**--> Docs <--**](https://freol35241.github.io/pydynkin/) **Note:** `dynkin` is also available in a C++ version, available here: https://github.com/freol35241/dynkin ## General `dynkin` is a set of tools for handling the dynamics and kinematics of rigid bodies in 3 dimensions (6DOFs). Some features: * Homogenous transformation matrices * Chained reference frames * Idealized rigid body implementation The fundamentals of reference frames and the kinematic relations of these are based on [Theory of Applied Robotics (Reza N. Jazar)](https://link.springer.com/book/10.1007/978-0-387-68964-7) , the idealized rigid body implementation follows the outline suggested in the lectures by [Fossen](https://www.fossen.biz/wiley/ed2/Ch3.pdf). ## Installation `pip install dynkin` ## Theory intro Some basic notions: * A reference `Frame` is defined in `dynkin` as an object which `positions`, `vectors`, `velocities`, `accelerations` etc can be decomposed in. `dynkin` represents reference `Frame`s by (4x4) homogenous transformation matrices. A `Frame` is aligned (positioned, rotated) and moves (linear and angular velocity) in relation to another `Frame` or the inertial frame (represented by `None`). * The `pose` of a `Frame` is its generalized position and the `twist` of a `Frame` is its generalized velocity, both in relation to the inertial frame. * All rotations in `dynkin` are internally represented by rotation matrices but the external API, so far, deals only with Euler angles of the YPR (Yaw-Pitch-Roll) convention. * A `kinematic chain` is a single-linked list of `Frame`s, where each `Frame` holds a reference to its closest parent. Any number of `Frame`s may be attached into such a chain and the chain may also have any number of branches, it is however the user´s responsibility to ensure no kinematic loops occur. * A `transform` is an object relating two `Frame`s enabling transformation of `positions`, `vectors`, `velocities` etc from one `Frame` to the other. The `Frame`s do not need to be part of the same `kinematic chain`. * A `RigidBody` is a 3D body with arbitrary extent that may be described by a generalized inertia matrix (6x6). It accelerates when subject to generalized external forces (`wrenches`) and rotational velocities give rise to inertial forces (coriolis and centripetal contributions). ## Examples ### Single frame ```python from dynkin import Frame, transform frame1 = Frame(position=[1, 2, 3], attitude=[0, 0, 90], degrees=True) # Find transformation from the inertial frame to frame1 ti1 = transform(None, frame1) # Transformation of vector v1_decomposed_in_frame1 = ti1.apply_vector(v1_decomposed_in_inertial_frame) # Transformation of position p1_decomposed_in_frame1 = ti1.apply_position(p1_decomposed_in_inertial_frame) # Transformation of wrench w1_decomposed_in_frame1 = ti1.apply_wrench(w1_decomposed_in_inertial_frame) # Find the inverse transformation t1i = ti1.inv() # Pose of this frame, decomposed in inertial frame frame1.get_pose() # Twist of this frame, decomposed in inertial frame frame.get_twist() ``` ### Two frames ```python from dynkin import Frame, transform frame1 = Frame(position=[1, 2, 3], attitude=[0, 0, 90], degrees=True) frame2 = Frame(position=[3, 2, 1], attitude=[0, 0, -90], degrees=True) # Find transformation from frame1 to frame2 t12 = transform(frame1, frame2) # Transformation of vector v1_decomposed_in_frame2 = t12.apply_vector(v1_decomposed_in_frame1) # Transformation of position p1_decomposed_in_frame2 = t12.apply_position(p1_decomposed_in_frame1) # Transformation of wrench w1_decomposed_in_frame2 = t12.apply_wrench(w1_decomposed_in_frame1) # Find the inverse transformation t21 = t12.inv() ``` ### Kinematic chains ```python from dynkin import Frame, transform frame1 = Frame(position=[1, 2, 3], attitude=[0, 0, 90], degrees=True) frame2 = frame1.align_child(position=[3, 2, 1], attitude=[0, 0, -90], degrees=True) frame3 = frame2.align_child(position=[1, 1, 1], attitude=[0, 0, 0], degrees=True) # Find transformation from inertial frame to frame3 ti3 = transform(None, frame3) # Transformation from frame3 and frame1 t31 = transform(frame3, frame1) ... ``` TODO: RigidBody example ## License Distributed under the terms of the MIT license, `dynkin` is free and open source software


نیازمندی

مقدار نام
- numpy


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl dynkin-0.2.1:

    pip install dynkin-0.2.1.whl


نصب پکیج tar.gz dynkin-0.2.1:

    pip install dynkin-0.2.1.tar.gz