معرفی شرکت ها


dynamodb-detech-ai-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DynamoDB utils
ویژگی مقدار
سیستم عامل -
نام فایل dynamodb-detech-ai-0.0.9
نام dynamodb-detech-ai
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Example Author
ایمیل نویسنده j.velez2210@gmail.com
آدرس صفحه اصلی https://github.com/detech-ai/Data_Pipelines
آدرس اینترنتی https://pypi.org/project/dynamodb-detech-ai/
مجوز -
# DynamoDB Package for detech.ai This is detech.ai's package to access Dynamodb. # Imports ```python import detech_query_pkg from detech_query_pkg import dynamodb_queries as db_queries from detech_query_pkg.utils import dynamodb_utils as db_utils #Start DynamoDB Client db_utils.create_dynamodb_client(aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=REGION_NAME) ``` # Initialize Client ```python def create_dynamodb_client(aws_access_key_id,aws_secret_access_key, region_name) ``` # Functions ## dynamodb <details> <summary>insert_alert</summary> ```python def insert_alert(alert_id, metric_id, org_id, app_id, team_id, assigned_to, start_time, end_time, alert_description, is_acknowledged, anomalies_dict, related_prev_anomalies, service_graph, significance_score, dynamodb) #Example insert_alert(alert_id = "256828", metric_id = 123, org_id = 'org_id', app_id = 'app_id', team_id = 'team_id', assigned_to = 'Jorge', \ start_time = '2020-09-03 12:00:00', end_time = '2020-09-03 12:20:00', alert_description = 'Spike in costs',\ is_acknowledged = 'True', anomalies_dict = {}, related_prev_anomalies = {}, service_graph = {}, significance_score = '34.3') ``` </details> <details> <summary>get_alert_item_by_key</summary> ```python def get_alert_item_by_key(anom_id, dynamodb) ``` </details> <details> <summary>update_alert_with_related_anomalies</summary> ```python def update_alert_with_related_anomalies(alert_id,start_time, corr_anoms_dict, related_prev_anomalies, dynamodb) ``` </details> <details> <summary>terminate_alert</summary> ```python def terminate_alert(alert_id,start_time, end_timestamp, dynamodb) ``` </details> <details> <summary>create_metric</summary> ```python def create_metric(metric_id, date_bucket, metric_name, provider, namespace, agent, org_id, app_id, alignment, groupby, dimensions, data_points_list, dynamodb) #Example create_metric( metric_id = "test1", date_bucket = "2020-10-02", metric_name = "error_rate", provider = "aws", namespace = "dynamodb", agent = "CloudWatch", org_id = "test", app_id = "app1", alignment = "Sum", dimensions = [{"Name": "TableName", "Value": "alerts.config"}], last = 1535530432, data_points_list = [ { 'val': 55, 'time' : 1535530430}, { 'val': 56, 'time': 1535530432}], dynamodb=dynamodb ) ``` </details> <details> <summary>batch_insert_metric_objects</summary> ```python def batch_insert_metric_objects(list_of_metric_objects, dynamodb) #Inserts list of metrics objects in batch into Dynamodb ``` </details> <details> <summary>get_metric_details</summary> ```python def get_metric_details(metric_id, dynamodb) #Fetches all the details for a specific metric_id ``` </details> <details> <summary>get_metric_item_by_key</summary> ```python def get_metric_item_by_key(metric_id, curr_date, dynamodb) ``` </details> <details> <summary>scan_metrics_by_encrypted_id</summary> ```python def scan_metrics_by_encrypted_id(anom_alarm_id, dynamodb) ``` </details> <details> <summary>query_alerts_configs_by_key</summary> ```python def query_alerts_configs_by_key(metric_id, dynamodb) ``` </details> <details> <summary>insert_alert_config</summary> ```python def insert_alert_config(metric_id, alert_title, severity, alert_type, alert_direction, description, duration, duration_unit, rule_dict, recipients_list, owner_dict, dynamodb) #Example insert_alert_config( metric_id = "metric1245", alert_title = "Anomaly by Cluster", severity = "critical", alert_type = "anomaly", alert_direction = "spikes/drops", description = "Relevant to Play Store billing user journey", duration= 12, duration_unit = "hours", rule_dict = {}, recipients_list = [{ "channel" : "webhook", "contact" : "j.velez2210@gmail.com" },{ "channel" : "slack", "contact" : "j.velez2210@gmail.com" } ], owner_dict = { "user_id" : "user12341", "user_name" : "João Tótó", } ) ``` </details> <details> <summary>query_most_recent_metric_fetching_log</summary> ```python def query_most_recent_metric_fetching_log(component_id, dynamodb) #Fetches the log with the highest timestamp, from all the logs between start & end ts ``` </details> ## dynamodb_utils <details> <summary>put_item</summary> ```python def put_item(item_dict, table_name, dynamodb) #Inserts json item into DynamoDB table #Example item_dict = { "attr" : "value", "attr2" : "value2" } table_name = "alerts" ``` </details> <details> <summary>batch_insert</summary> ```python def batch_insert(list_of_item_dicts, table_name, dynamodb) #Inserts a list of item_dicts in batch to dynamodb ``` </details> <details> <summary>get_item</summary> ```python def get_item(key_dict, table_name, dynamodb) #Retrieves item from DynamoDB table #Example key_dict = { "prim_key" = "value", "sort_key" = "value" } ``` </details> <details> <summary>get_item_and_retrieve_specific_attributes</summary> ```python def get_item_and_retrieve_specific_attributes(key_dict, attr_list, table_name, dynamodb) #Retrieves item from DynamoDB table and retrieve specific attributes #Example key_dict = { "prim_key" :"value", "sort_key" : "value" } attr_list = ['attr1', 'attr2'] ``` </details> <details> <summary>update_item</summary> ```python def update_item(key_dict, update_expression, expression_attr_values, table_name, dynamodb) #Retrieves item from DynamoDB table #Example key_dict = { "prim_key" = "value", "sort_key" = "value" } update_expression = "set service_graph=:i, metric_list=:l, significance_score=:s" expression_attr_values = { ':i': {'s1':['s2', 's3']}, ':l': ['124','123'], ':s': Decimal(35.5) } #example to append to list UpdateExpression="SET some_attr = list_append(if_not_exists(some_attr, :empty_list), :i)", ExpressionAttributeValues={ ':i': [some_value], "empty_list" : [] } ``` </details> <details> <summary>update_item_conditionally</summary> ```python def update_item_conditionally(key_dict, condition_expression, update_expression, expression_attr_values, table_name, dynamodb) #Retrieves item from DynamoDB table #Example key_dict = { "prim_key" = "value", "sort_key" = "value" } update_expression = "set service_graph=:i, metric_list=:l, significance_score=:s" expression_attr_values = { ':i': {'s1':['s2', 's3']}, ':l': ['124','123'], ':s': Decimal(35.5) } condition_expression = "significance_score <= :val" ``` </details> <details> <summary>delete_item_conditionally</summary> ```python def delete_item_conditionally(key_dict, condition_expression, expression_attr_values, table_name, dynamodb) #Example condition_expression = "significance_score <= :val" expression_attr_values = { ":val": Decimal(50) } key_dict = { 'org_id': 'Aptoide', 'start_time': '2020-09-03 12:00:00' } ''' ``` </details> <details> <summary>query_by_key</summary> ```python def query_by_key(key_condition, table_name, dynamodb) #Queries from DynamoDB table by key condition #Example key_condition = Key('org_id').eq('Aptoide') ``` </details> <details> <summary>query_and_project_by_key_condition</summary> ```python def query_and_project_by_key_condition(projection_expr, expr_attr_names, key_condition, table_name, dynamodb) #Queries from DynamoDB table by key condition and only returns some attrs #Example key_condition = Key('year').eq(year) & Key('title').between(title_range[0], title_range[1]) projection_expr = "#yr, title, info.genres, info.actors[0]" expr_attr_names = {"#yr": "year"} ``` </details> <details> <summary>scan_table</summary> ```python def scan_table(scan_kwargs, table_name, dynamodb) #Scans entire table looking for items that match the filter expression #Example scan_kwargs = { 'FilterExpression': Key('year').between(*year_range), 'ProjectionExpression': "#yr, title, info.rating", 'ExpressionAttributeNames': {"#yr": "year"} } ``` </details> <details> <summary>query_by_key_min_max</summary> ```python def query_by_key_min_max(key_condition, table_name, is_min, dynamodb) #Queries from DynamoDB table by key condition #Example key_condition = Key('part_id').eq(partId) & Key('range_key').between(start, end) #or key_condition = Key('part_id').eq(partId) ``` </details> <details> <summary>get_all_items_in_table</summary> ```python def get_all_items_in_table(table_name, dynamodb) ``` </details>


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl dynamodb-detech-ai-0.0.9:

    pip install dynamodb-detech-ai-0.0.9.whl


نصب پکیج tar.gz dynamodb-detech-ai-0.0.9:

    pip install dynamodb-detech-ai-0.0.9.tar.gz