معرفی شرکت ها


dynamicio-4.3.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Panda's wrapper for IO operations
ویژگی مقدار
سیستم عامل -
نام فایل dynamicio-4.3.3
نام dynamicio
نسخه کتابخانه 4.3.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Christos Hadjinikolis, Radu Ghitescu
ایمیل نویسنده christos.hadjinikolis@gmail.com, radu.ghitescu@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/dynamicio/
مجوز Apache License 2.0
[![CircleCI](https://dl.circleci.com/status-badge/img/gh/VorTECHsa/dynamicio/tree/master.svg?style=svg)](https://dl.circleci.com/status-badge/redirect/gh/VorTECHsa/dynamicio/tree/master) [![Coverage Status](https://github.com/VorTECHsa/dynamicio/blob/master/docs/coverage_report/coverage-badge.svg?raw=True)]() [<img src="https://img.shields.io/badge/slack-@vortexa/dynamicio_public-purple.svg?logo=slack">](https://join.slack.com/share/enQtMzg2Nzk3ODY3MzEzNi0yNTU1ZmIyN2JkMGFhZjhhZWVjNzA2OWUzNWIyMjMyYmYzZmE4MzBjYWQ3YjdhNjU1MGU2NjFkNzMyZDllMzE2?raw=True) <img src="https://github.com/VorTECHsa/dynamicio/blob/master/docs/images/logo-transparent.png?raw=True" width="500"> <img src="https://github.com/VorTECHsa/dynamicio/blob/master/docs/images/wrapped-panda.png?raw=True" width="100"> A repository for hosting the `dynamicio` library, used as a wrapper for `pandas` i/o operations. -- Logo illustrated by [Nick Loucas](https://www.linkedin.com/in/nickloucas/) ## Table of Contents - [Why wrap your i/o?](https://github.com/VorTECHsa/dynamicio/tree/master#why-wrap-your-i-o) * [Managing various Resources](https://github.com/VorTECHsa/dynamicio/tree/master#managing-various-resources) * [Managing Various Data Types](https://github.com/VorTECHsa/dynamicio/tree/master#managing-various-data-types) * [Validations & Metrics Generation](https://github.com/VorTECHsa/dynamicio/tree/master#validations---metrics-generation) * [Testing (Running Local Regression Tests)](https://github.com/VorTECHsa/dynamicio/tree/master#testing--running-local-regression-tests) * [So, what do we do about these?](https://github.com/VorTECHsa/dynamicio/tree/master#so--what-do-we-do-about-these) * [The Solution](https://github.com/VorTECHsa/dynamicio/tree/master#the-solution) * [Main features](https://github.com/VorTECHsa/dynamicio/tree/master#main-features) - [Supported sources and data formats:](https://github.com/VorTECHsa/dynamicio/tree/master#supported-sources-and-data-formats) * [Coming soon](https://github.com/VorTECHsa/dynamicio/tree/master#coming-soon) - [Installation](https://github.com/VorTECHsa/dynamicio/tree/master#installation) - [API Documentation](https://github.com/VorTECHsa/dynamicio/tree/master#api-documentation) - [How to use](https://github.com/VorTECHsa/dynamicio/tree/master#how-to-use) * [Keywords](https://github.com/VorTECHsa/dynamicio/tree/master#keywords) * [Let's start](https://github.com/VorTECHsa/dynamicio/tree/master#let-s-start) + [Step 1: Resource Definitions](https://github.com/VorTECHsa/dynamicio/tree/master#step-1--resource-definitions) + [Step 2: Defining your environment variables](https://github.com/VorTECHsa/dynamicio/tree/master#step-2--defining-your-environment-variables) + [Step 3: Read in your resource definitions](https://github.com/VorTECHsa/dynamicio/tree/master#step-3--read-in-your-resource-definitions) + [Step 4: Loading the data resources](https://github.com/VorTECHsa/dynamicio/tree/master#step-4--loading-the-data-resources) - [Step 4.1. `SCHEMA_FROM_FILE`](https://github.com/VorTECHsa/dynamicio/tree/master#step-41--schema-from-file) - [Step 4.2. Use the dynamicio cli](https://github.com/VorTECHsa/dynamicio/tree/master#step-42-use-the-dynamicio-cli) - [Step 4.3: Loading from `S3`](https://github.com/VorTECHsa/dynamicio/tree/master#step-43--loading-from--s3) - [Step 4.3: Loading from `Postgres`](https://github.com/VorTECHsa/dynamicio/tree/master#step-43--loading-from--postgres) + [Step 5: Writing out](https://github.com/VorTECHsa/dynamicio/tree/master#step-5--writing-out) + [Step 6: Full Code](https://github.com/VorTECHsa/dynamicio/tree/master#step-6--full-code) * [Utilising `asyncio`](https://github.com/VorTECHsa/dynamicio/tree/master#utilising--asyncio) - [Testing Locally](https://github.com/VorTECHsa/dynamicio/tree/master#testing-locally) - [Last notes](https://github.com/VorTECHsa/dynamicio/tree/master#last-notes) <small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small> ## Why wrap your i/o? Working with `pandas` dataframes has opened up a new world of potential in Data Science. However, if you are using `pandas` to support production pipelines, whether ML or ETL, you end up having a big part of your code be concerned with I/O operations. ### Managing various Resources First, it's the various type of resources you need to interact with; object storage (S3 or GCS) databases (Athena, Big Query, Postgres), Kafka and many more. For each of these, you have dependencies on various libraries such as `s3fs`, `fsspec`, `gcfs`, `boto3`, `awscli`, `aws-wrangler`, `sql-alchemy`, `tables`, `kafka-python` and many more. ### Managing Various Data Types ![data-types](https://github.com/VorTECHsa/dynamicio/blob/master/docs/images/data-types.png?raw=True) Then it's the various data types you need handle, `parquet`, `hdfs`, `csv`, `json` and many others, each of which come with their own set of configuration `kwargs`, things like the orientation of the dataset (`json`) or the parquet engine you want to use behind the scenes (`pyarrow` or `fastparquet`). ### Validations & Metrics Generation Then, it's the need to validate your expectations on the datasets; things like unique or null values being allowed in a column, allowing only a specific set of categorical values, or numerical values within a specified range. And what about metrics generation? The ability to monitor data distributions and how various metrics change with every run, is a significant aspect of monitoring the quality of your solution. ### Testing (Running Local Regression Tests) Finally, what about testing your code in different environments? Take, for instance, a traditional setup where you have the following 4 environments to work against: - Local; - Develop; - Staging, and; - Production. Configuring your code to work against the last 3 `Develop, Staging and Production` can easily be done through environment variables, but what about testing locally? What if you want to run your pipelines locally? Well, you can, but usually that entails a big deal of mocking calls to external services. Instead, wouldn't it be great if you could seamlessly direct your I/O operations to local sample data. ### So, what do we do about these? This proliferation of I/O operations leads to the emergence of glue code, which can be very difficult to manage. The problem is highlighted as an **ML-System Anti-Pattern** in [Hidden Technical Debt in Machine Learning Systems](https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf) > ...ML researchers tend to develop general purpose solutions as self-contained packages. A wide variety of these are > available as open-source packages at places like `ml-oss.org`, or from in-house code, proprietary packages, and cloud-based platforms. > > Using generic packages often results in a **glue code** system design pattern, in which a massive amount of supporting > code is written to get data into and out of general-purpose packages. **Glue code** is costly in the long > term because it tends to freeze a system to the peculiarities of a specific package; testing alternatives > may become prohibitively expensive. In this way, using a generic package can inhibit improvements, because it > makes it harder to take advantage of domain-specific properties or to tweak the objective function to > achieve a domain-specific goal. Because a mature system might end up being (at most) 5% machine learning > code and (at least) 95% glue code, it may be less costly to create a clean native solution rather > than re-use a generic package. ### The Solution Quoting from the same paper: > An important strategy for combating glue-code is to wrap black-box packages into common API's. This allows supporting > infrastructure to be more reusable and reduces the cost of changing packages. Dynamicio (or dynamic(i/o)) serves exactly that; it serves as a convenient wrapper around `pandas` I/O operations. It's a manifestation of the dependency inversion principle--a layer of indirection if you want--which keeps your code DRY and increases re-usability, effectively decoupling business logic from the I/O layer. ### Main features `dynamic(i/o)` supports: * seamless transition between environments; * abstracting away from resource and data types through `resource definitions`; * honouring your expectations on data through `schema definitions`; * metrics auto-generation (logging) for monitoring purposes. ## Supported sources and data formats <img src="https://github.com/VorTECHsa/dynamicio/blob/master/docs/images/supported_sources.png?raw=True" width="600"> - **S3** (or local) Input & Output: - `parquet` - `h5` - `json` - `csv` - **Postgres** Input & Output - **Kafka** Output ### Coming soon - **Athena** (pending) - **Delta Tables** (pending) - **GCS** (pending) - **BigQuery** (pending) ## Installation To install `dynamic(i/o)` you need to first authenticate with AWS Code Artifact. Just follow the below steps: ```shell >> pip install dynamicio ``` ## API Documentation Read our docs here: https://vortechsa.github.io/dynamicio/ ## How to use We will go over an end-to-end example for reading and writing a single dataset, covering: 1. all components involved and how they are configured, and; 2. how these components are pieced together You can find this example under the demo directory fo this repo. ### Keywords: - **source configs** - **resource definitions** - **schema definitions** ### Let's start Suppose you want to ingest the `foo` and `bar` datasets, respectively from `S3` and `Postgres` and stage them to S3 for further processing. Assume you want to build a pipeline that looks something like the image below: <img src="https://github.com/VorTECHsa/dynamicio/blob/master/docs/images/sample-pipeline.png?raw=True" width="600"> Assume the below repository structure, which implements this pipeline, for the purpose of this tutorial: ```shell demo ├── __init__.py ├── resources │   ├── definitions │   │   ├── input.yaml │   │   ├── processed.yaml │   │   └── raw.yaml │   └── schemas │   ├── input │   │   ├── bar.yaml │   │   └── foo.yaml │   └── processed │   ├── final_bar.yaml │   └── final_foo.yaml ├── src │   ├── __init__.py │   ├── __main__.py │   ├── constants.py │   ├── environment.py │   ├── io.py │   ├── runner_selection.py │   └── runners │   ├── __init__.py │   ├── staging.py │   └── transform.py └── tests ├── __init__.py ├── conftest.py ├── constants.py ├── data │   ├── input │   │   ├── bar.parquet │   │   └── foo.csv │   ├── processed │   │   └── expected │   │   ├── final_bar.parquet │   │   └── final_foo.parquet │   └── raw │   └── expected │   ├── staged_bar.parquet │   └── staged_foo.parquet ├── runners │   ├── __init__.py │   ├── conftest.py │   ├── test_staging.py │   └── test_transform.py ├── test_pipeline.py └── test_runner_selection.py ``` #### Step 1: Resource Definitions We will start with defining our input and output resources as yaml files. These need to be defined under `resources/definitions`: ```shell resources ├── __init__.py ├── definitions │   ├── input.yaml │   ├── processed.yaml │   └── raw.yaml └── schemas ├── input │   ├── bar.yaml │   └── foo.yaml └── processed ├── final_bar.yaml └── final_foo.yaml ``` You will need to define your pipeline's resources by creating three `yaml` files. The first is: - `input.yaml` which concerns data read by the **staging** task; ```yaml --- FOO: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/input/foo.csv" file_type: "csv" actual: type: "s3" s3: bucket: "[[ S3_YOUR_INPUT_BUCKET ]]" file_path: "data/foo.h5" file_type: "hdf" schema: file_path: "[[ RESOURCES ]]/schemas/input/foo.yaml" BAR: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/input/bar.parquet" file_type: "parquet" actual: type: "postgres" postgres: db_host: "[[ DB_HOST ]]" db_port: "[[ DB_PORT ]]" db_name: "[[ DB_NAME ]]" db_user: "[[ DB_USER ]]" db_password: "[[ DB_PASS ]]" schema: file_path: "[[ RESOURCES ]]/schemas/input/bar.yaml" ``` - the `raw.yaml`, which concerns data coming out of the **staging** task and go into the **transform** task: ```yaml --- STAGED_FOO: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/raw/staged_foo.parquet" file_type: "parquet" actual: type: "s3" s3: bucket: "[[ S3_YOUR_OUTPUT_BUCKET ]]" file_path: "live/data/raw/staged_foo.parquet" file_type: "parquet" STAGED_BAR: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/raw/staged_bar.parquet" file_type: "parquet" actual: type: "s3" s3: bucket: "[[ S3_YOUR_OUTPUT_BUCKET ]]" file_path: "live/data/raw/staged_bar.parquet" file_type: "parquet" ``` - and the `processed.yaml`, which concerns data coming out of the **transform* task: ```yaml --- FINAL_FOO: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/processed/final_foo.parquet" file_type: "parquet" actual: type: "s3" s3: bucket: "[[ S3_YOUR_OUTPUT_BUCKET ]]" file_path: "live/data/processed/final_foo.parquet" file_type: "parquet" schema: file_path: "[[ RESOURCES ]]/schemas/processed/final_foo.yaml" FINAL_BAR: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/processed/final_bar.parquet" file_type: "parquet" options: use_deprecated_int96_timestamps: true coerce_timestamps: "ms" allow_truncated_timestamps: false row_group_size: 1000000 actual: type: "kafka" kafka: kafka_server: "[[ KAFKA_SERVER ]]" kafka_topic: "[[ KAFKA_TOPIC ]]" options: compression_type: "snappy" max_in_flight_requests_per_connection: 10 batch_size: 262144 request_timeout_ms: 60000 # 60s buffer_memory: 134217728 # 128MB schema: file_path: "[[ RESOURCES ]]/schemas/processed/final_bar.yaml" ``` We will hence refer to these files as **"resource definitions"**. The first, `input.yaml` defines the input sources for the **staging** task, handled by the respective module (`runners/staging.py`) while the second one, defines its output; similarly for **transform**. These files are parsed by `dynamicio.config.IOConfig` to generated configuration i/o instances referred to as "source configs" (see `demo/src/__init__.py`). Notice that under every source there are three layers: `sample`, `actual` and `schema`. The first two point to the variants of the same dataset, depending on whether it is called from the local environment or from the cloud (we will showcase how this distinction takes place later). The third refers your source config to a **"schema definition"** for your dataset (we will cover this in detail later). #### Step 2: Defining your environment variables Also notice that paths to datasets are embedded with dynamic values identified with double squared brackets, e.g. `[[ S3_YOUR_OUTPUT_BUCKET ]]`. These can be defined in a module in your repository. Resource definitions (`*.yaml` files) work in conjunction with `global` and `environment` variables: - `environment.py` ```shell ├── __init__.py ├── src └── environment.py ... ``` Let's have a look inside. ```python """A module for configuring all environment variables.""" import os ENVIRONMENT = "sample" CLOUD_ENV = "DEV" RESOURCES = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../resources") TEST_RESOURCES = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../tests") S3_YOUR_INPUT_BUCKET = None S3_YOUR_OUTPUT_BUCKET = None KAFKA_SERVER = None KAFKA_TOPIC = None DB_HOST = None DB_PORT = None DB_NAME = None DB_USER = None DB_PASS = None REFERENCE_DATA_STATE_KEY = None LOWER_THAN_LIMIT = 1000 # We will discuss this one later in step 4. ``` This module will be passed as an input parameter to instances of the `dynamicio.config.IOConfig` class. Let's cover some of its variables: - ```python "ENVIRONMENT": "sample", ``` used to distinguish between local and cloud runs of your module. It assumes that this environment variable is defined in the cloud environment where your module is executed from. - ```python "TEST_RESOURCES": os.path.join(os.path.dirname(os.path.realpath(__file__)), "../tests"), ``` It is defined in the resource definitions, e.g.: ```yaml --- FOO: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/input/foo.csv" file_type: "csv" actual: type: "s3" s3: bucket: "[[ S3_YOUR_INPUT_BUCKET ]]" file_path: "data/foo.h5" file_type: "hdf" schema: file_path: "[[ RESOURCES ]]/schemas/input/foo.yaml" ``` and therefore needs to be defined here as well. Any other dynamic variable (identified with the doubly squared brackets) defined in the resource definitions needs to also be defined here and can be either statically or dynamically defined (i.e. hardcoded or defined as an environment value). #### Step 3: Read in your resource definitions Reading in the resources definitions can be done by means of instantiating instances of the `dynamicio.config.IOConfig` class (the, so called, "source configs"). This is done in: ```shell src ├── __init__.py ``` which allows it to be automatically loaded on call of any module within the `pipeline` package. ```python """Set config IOs""" __all__ = ["input_config", "raw_config", "processed_config"] import logging import os from demo.src import environment from demo.src.environment import ENVIRONMENT, RESOURCES from dynamicio.config import IOConfig logging.basicConfig(level=logging.INFO) logging.getLogger("kafka").setLevel(logging.WARNING) input_config = IOConfig( path_to_source_yaml=(os.path.join(RESOURCES, "definitions/input.yaml")), env_identifier=ENVIRONMENT, dynamic_vars=environment, ) raw_config = IOConfig( path_to_source_yaml=(os.path.join(RESOURCES, "definitions/raw.yaml")), env_identifier=ENVIRONMENT, dynamic_vars=environment, ) processed_config = IOConfig( path_to_source_yaml=(os.path.join(RESOURCES, "definitions/processed.yaml")), env_identifier=ENVIRONMENT, dynamic_vars=environment, ) ``` On loading, `IOConfig` will load the respective configs for all resources in the form of a multi-layered dictionary, e.g., for `actual`: ```python import demo.src.environment { "FOO": { "sample": { "type": "local", "local": { "file_path": f"{demo.src.environment.TEST_RESOURCES}/data/input/foo.csv", "file_type": "csv", }, }, "actual": { "type": "s3", "s3": { "bucket": f"{demo.src.environment.S3_YOUR_INPUT_BUCKET}", "file_path": "data/foo.h5", "file_type": "hdf" } }, } } ``` Then, depending on the value of the `env_identifier` parameter, the respective sub-dictionary is returned. For example, with: ```python foo_io = input_config.get(source_key="FOO") ``` and with `env_identifier="actual"`, the output would be: ```python "type": "s3", "s3": { "bucket": f"{demo.src.environment.S3_YOUR_INPUT_BUCKET}", "file_path": "data/foo.h5", "file_type": "hdf" } ``` #### Step 4: Loading the data resources To load a resource, you will need to generate instances of subclasses of `from dynamicio import UnifiedIO` class. Note that the `UnifiedIO` class operates as an abstract class and cannot be used for instantiating objects. You will need to implement your own subclasses for each of the inputs you care to load. You can do this in the `io.py` module, under: ```shell . ├── src │   ├── __init__.py │   ├── io.py ``` The file looks like this: ```python """Responsible for configuring io operations for input data.""" # pylint: disable=too-few-public-methods __all__ = ["InputIO", "StagedFoo", "StagedBar"] from sqlalchemy.ext.declarative import declarative_base from dynamicio import UnifiedIO, WithLocal, WithPostgres, WithS3File from dynamicio.core import SCHEMA_FROM_FILE, DynamicDataIO Base = declarative_base() class InputIO(UnifiedIO): """UnifiedIO subclass for V6 data.""" schema = SCHEMA_FROM_FILE class StagedFoo(WithS3File, WithLocal, DynamicDataIO): """UnifiedIO subclass for staged foos.""" schema = { "column_a": "object", "column_b": "object", "column_c": "int64", "column_d": "int64", } class StagedBar(WithLocal, WithPostgres, DynamicDataIO): """UnifiedIO subclass for cargo movements volumes data.""" schema = { "column_a": "object", "column_b": "object", "column_c": "int64", "column_d": "int64", } ``` Instances of the `DynamicDataIO` class can either inherit directly from `UnifiedIO` (e.g. `InputIO` inherits from `UnifiedIO`) or user can choose the mixins they want to use (e.g. `StagedFoo` inherits from `WithS3File` and `WithLocal` mixins and needs to inherit from `DynamicDataIO`; note that MOR kicks in to address polymorphic conflicts--i.e. order matters). Also, all instances of the `DynamicDataIO` **must** define a class `schema`. The schema can have the form of a dictionary, associating columns (keys) with `dtypes` (values) or be defined as a yaml file (see `InputIO`) as explained in the next section. **N.B.** For convenience's sake and to reduce the need of boilerplate code, using a single class definition like `InputIO` is recommended (this way all your datasets can be loaded with instances of the same class). However, if you need to use different mixins for different datasets, you can do so by defining a class for each dataset (e.g. `StagedFoo` and `StagedBar`). You will definitely need to define your own classes if you want to avoid using `SCHEMA_FROM_FILE` (as per the below instructions) but in this case, your dataset's name will be inferred from the dataclass name you use, e.g. `StagedFoo` will be inferred as `STAGED_FOO`. ##### Step 4.1. `SCHEMA_FROM_FILE` `from dynamicio.core import SCHEMA_FROM_FILE` is a unique dynamic(i/o) object used as a placeholder. It is used to indicate that a schema is provided as part of a _resource definition_. For example: ```yaml --- FOO: sample: ... actual: ... schema: file_path: "[[ RESOURCES ]]/schemas/input/foo.yaml" ``` `foo.yaml` is effectively a schema definition and looks like this: ```yaml --- name: foo columns: column_a: type: "object" validations: has_unique_values: apply: true options: {} metrics: - Counts column_b: type: "object" validations: has_no_null_values: apply: true options: {} metrics: - CountsPerLabel column_c: type: float64 validations: is_greater_than: apply: true options: threshold: 1000 metrics: [] column_d: type: float64 validations: is_lower_than: apply: true options: threshold: 1000 metrics: - Min - Max - Mean - Std - Variance ``` The file is quite self-explanatory. The format is: `DataSet`: - `Column` - `type` - `validations` - `metrics` For a dataset, each of the desired columns are dictated here, along with their designated `dtypes`. The `columns` are used to filter out undesired columns in an optimal manner. This means that it will happen on loading for `*.csv` and `*.parquet` files as well as when interacting with a database, but will happen post-loading in the case of `*.h5` or `*.json`. `dtypes` are then used to validate the types of the columns. If types don't match, `dynamic(i/o)` will attempt to cast them and will issue a `WARNING`. If casting does not work either, it will throw a `ValueError` exception. `validations` and `metrics` are there to document the user's expectations of the quality of the dataset. They can be automatically applied on loading or on writing out. Specifically, you can use the following **validations**: - `has_unique_values` # no options - `has_no_null_values` # no options - `has_acceptable_percentage_of_nulls` - `is_in`: ```yaml validations: is_in: apply: true options: categorical_values: - class_a - class_b - class_c match_all: false # true by default, if false, then the column unique categoricals must be equal to the acceptable ones, else they must be a subset ``` - `is_greater_than` ```yaml validations: is_greater_than: apply: true options: threshold: 1000 ``` - `is_greater_than_or_equal` # same as `is_greater_than` - `is_lower_than` # same as `is_greater_than` - `is_lower_than_or_equal` # same as `is_greater_than` - `is_between` # same as `is_greater_than` ```yaml validations: is_between: apply: true options: lower: 0 upper: 1000 include_left: false include_right: true # true by default ``` and **metrics**: - `Min` - `Max` - `Mean` - `Std` - `Variance` - `Counts` - `UniqueCounts` - `CountsPerLabel` imposed as per below: ```shell column_c: type: float64 validations: {} metrics: - Min - Max - Mean - Std - ... ``` Note that you can also use dynamic fields to define validations, e.g. see `LOWER_THAN_LIMIT` in the file below: ```yaml --- name: bar columns: column_a: type: "object" validations: has_unique_values: apply: true options: {} metrics: - Counts column_b: type: "object" validations: has_no_null_values: apply: true options: {} metrics: - CountsPerLabel column_c: type: float64 validations: is_greater_than: apply: true options: threshold: 1000 metrics: [] column_d: type: float64 validations: is_lower_than: apply: true options: threshold: "[[ LOWER_THAN_LIMIT ]]" metrics: - Min - Max - Mean - Std - Variance ``` Similar to resource definitions, this value needs to be defined in `environment.py` ##### Step 4.2. Use the dynamicio cli The `dynamicio` cli can be used to automatically generate schema definitions for you, provided either a path to a dataset (`json`, `parquet`, `hdf`, `csv`) or to a directory. Here is how you can use it: ```shell usage: dynamicio [-h] (--batch | --single) -p PATH -o OUTPUT Generate dataset schemas optional arguments: -h, --help show this help message and exit --batch used to generate multiple schemas provided a datasets directory. --single used to generate a schema provided a single dataset. -p PATH, --path PATH the path to the dataset/datasets-directory. -o OUTPUT, --output OUTPUT the path to the schemas output directory. ``` The generated schema definitions will not have any validations or metrics automatically selected for you. ##### Step 4.3: Loading from `S3` To then load from `S3` you simply do: ```python foo_df = InputIO(source_config=input_config.get(source_key="FOO"), apply_schema_validations=True, log_schema_metrics=True).read() ``` which will load the `foo.csv` file as a dataframe. ##### Step 4.3: Loading from `Postgres` Likewise to `S3` resources, `postgres` resources need the same number of options to be defined for their loading. **Implicitly, dynamicio is able to infer data model from the schema yml files of the source key provided rather than requiring that the schema is explicitly defined.** This data model defines the table, the columns and their respective SQL types. To, then, load from `postgres` you simply do: ```python bar_df = InputIOsource_config=input_config.get(source_key="BAR"), apply_schema_validations=True, log_schema_metrics=True).read() ``` which will load the cargo the movements table as a dataframe. #### Step 5: Writing out Sinking data is done in a very similar way. You need to: 1. Define your output resource definitions, in our case in `raw.yaml` ```yaml --- STAGED_FOO: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/raw/staged_foo.parquet" file_type: "parquet" actual: type: "s3" s3: bucket: "[[ S3_YOUR_OUTPUT_BUCKET ]]" file_path: "live/data/raw/staged_foo.parquet" file_type: "parquet" STAGED_BAR: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/raw/staged_bar.parquet" file_type: "parquet" actual: type: "s3" s3: bucket: "[[ S3_YOUR_OUTPUT_BUCKET ]]" file_path: "live/data/raw/staged_bar.parquet" file_type: "parquet" ``` 2. You need to define the respective dynamic values found in your resource definitions in your `src/environment.py` 3. You need to create an instance of the `IOConfig` class for the `raw.yaml` in the `__init__.py` file (we already did this). 4. Define the additional `DynamicDataIO` subclasses in the `src/io.py` module, dictating through the schema the list of columns, and their types (also used for schema validation). 5. Finally, instantiate instances of those subclasses and call the `.write()` method, passing in the dataframe you want to write out, e.g. `demo/src/runners/staging.py`: ```python ... StagedFoo(source_config=raw_config.get(source_key="STAGED_FOO"), **constants.TO_PARQUET_KWARGS).write(foo_df) StagedBar(source_config=raw_config.get(source_key="STAGED_BAR")).write(bar_df) ``` Notice that you can pass all `pandas` options to write out, when for instance you are writing out `parquet`. `demo/src/constants.py`: ```python # Parquet TO_PARQUET_KWARGS = { "use_deprecated_int96_timestamps": False, "coerce_timestamps": "ms", "allow_truncated_timestamps": True, } ``` Of, course this is not a problem as parquet is the format used by both resources in either environment. This not always the case however. See in `demo/resources/definitions/processed.yaml`: ```yaml --- ... FINAL_BAR: sample: type: "local" local: file_path: "[[ TEST_RESOURCES ]]/data/processed/final_bar.parquet" file_type: "parquet" options: <---- Options for Local writing as parquet use_deprecated_int96_timestamps: true coerce_timestamps: "ms" allow_truncated_timestamps: false row_group_size: 1000000 actual: type: "kafka" kafka: kafka_server: "[[ KAFKA_SERVER ]]" kafka_topic: "[[ KAFKA_TOPIC ]]" options: <---- Options for writting to a Kafka Topic compression_type: "snappy" max_in_flight_requests_per_connection: 10 batch_size: 262144 request_timeout_ms: 60000 # 60s buffer_memory: 134217728 # 128MB schema: file_path: "[[ RESOURCES ]]/schemas/processed/final_bar.yaml" ``` Here, we have a case where different options need to be used for each environment as it deals with a different source. This is gracefully managed through resource definitions passing these arguments in the `options` key per environment. #### Step 6: Full Code The full code for the loading module in our example would live under: ```shell ├── __init__.py ├── src ... │   ├── runners │   │   └── staging.py ``` and looks like: ```python """Add module docstring....""" import logging from demo.src import constants, input_config, raw_config from demo.src.io import InputIO, StagedBar, StagedFoo logger = logging.getLogger(__name__) def main() -> None: """The entry point for the Airflow Staging task. Returns: Void function. """ # LOAD DATA logger.info("Loading data from live sources...") bar_df = InputIO(source_config=input_config.get(source_key="BAR"), apply_schema_validations=True, log_schema_metrics=True).read() foo_df = InputIO(source_config=input_config.get(source_key="FOO"), apply_schema_validations=True, log_schema_metrics=True).read() logger.info("Data successfully loaded from live sources...") # TRANSFORM DATA logger.info("Apply transformations...") # TODO: Apply your transformations logger.info("Transformations applied successfully...") # SINK DATA logger.info("Begin sinking data to staging area:") StagedFoo(source_config=raw_config.get(source_key="STAGED_FOO"), **constants.TO_PARQUET_KWARGS).write(foo_df) StagedBar(source_config=raw_config.get(source_key="STAGED_BAR")).write(bar_df) logger.info("Data staging is complete...") ``` ### Utilising `asyncio` `Dynamic(i/o)` supports use of `asyncio` to speed up `I/O bound` operations through leveraging multithreading. An example can be found in the second of the two demo tasks, namely, the `transform.py` task. ```python """Add module docstring....""" import asyncio import logging import demo.src.environment from demo.src import processed_config, raw_config from demo.src.io import InputIO, StagedBar, StagedFoo logger = logging.getLogger(__name__) async def main() -> None: """The entry point for the Airflow Staging task. Returns: Void function. """ # LOAD DATA logger.info("Loading data from live sources...") [bar_df, foo_df] = await asyncio.gather( StagedBar(source_config=raw_config.get(source_key="STAGED_BAR")).async_read(), StagedFoo(source_config=raw_config.get(source_key="STAGED_FOO")).async_read() ) logger.info("Data successfully loaded from live sources...") # TRANSFORM DATA logger.info("Apply transformations...") # TODO: Apply your transformations logger.info("Transformations applied successfully...") # SINK DATA logger.info(f"Begin sinking data to staging area: S3:{demo.src.environment.S3_YOUR_OUTPUT_BUCKET}:live/data/raw") await asyncio.gather( InputIO(source_config=processed_config.get(source_key="FINAL_FOO"), apply_schema_validations=True, log_schema_metrics=True).async_write(foo_df), InputIO(source_config=processed_config.get(source_key="FINAL_BAR"), apply_schema_validations=True, log_schema_metrics=True).async_write(bar_df), ) logger.info("Data staging is complete...") ``` In short, you simply need to utilise the `async_read()` or the `async_write()` methods instead, plus await and gather your calls. ## Testing Locally After following the above documentation, at this point it should be clear that `dynamic(i/o)` is optimised for enabling seamless local testing for your pipelines. Simply by configuring your `ENVIRONMENT`'s default value to `sample` and provided that you have the required tests data sources in the necessary directories, it becomes very simple to test your pipelines end-to-end in seconds, eliminating the need to deploy your dags and wait for their tasks to be provided access to processing resources. All you need to do is mimic the order of execution of your tasks, running them in procedural order. In the case of our example, you would have to: 1. Add the necessary data under `tests/data`: ```shell └── tests ├── __init__.py ├── conftest.py ├── constants.py ├── data │   ├── input │   │   ├── bar.parquet │   │   └── foo.csv │   ├── processed │   │   └── expected │   │   ├── final_bar.parquet │   │   └── final_foo.parquet │   └── raw │   └── expected │   ├── staged_bar.parquet │   └── staged_foo.parquet ├── runners │   ├── __init__.py │   ├── conftest.py │   ├── test_staging.py │   └── test_transform.py ├── test_pipeline.py └── test_runner_selection.py ``` 2. Implement an end-to-end, black-box style test that simply generates the expected data output given a specific input (deleting the output after the assertion) An example end-to-end test in this case, for a single airflow task would look like: ```python """An example pipeline to showcase how dynamicio can bt used for setting up a local e2e testing!""" # pylint: disable=missing-module-docstring, missing-class-docstring, missing-function-docstring, unused-argument, too-few-public-methods # noqa import os import pandas as pd import pytest from demo.src import processed_config, raw_config from demo.src.runners import staging, transform class TestPipeline: """Example e2e test.""" @pytest.mark.end_to_end def test_dag_with_mock_sample_input_data( self, expected_staged_foo_df, expected_staged_bar_df, expected_final_foo_df, expected_final_bar_df, ): """Showcases how you can leverage dynamicio to read local data for fast feedback when you want to run your pipelines locally.""" # Given # The src/resources/input.yaml # When staging.main() transform.main() # Then try: assert expected_staged_foo_df.equals(pd.read_parquet(raw_config.get(source_key="STAGED_FOO")["local"]["file_path"])) assert expected_staged_bar_df.equals(pd.read_parquet(raw_config.get(source_key="STAGED_BAR")["local"]["file_path"])) assert expected_final_foo_df.equals(pd.read_parquet(processed_config.get(source_key="FINAL_FOO")["local"]["file_path"])) assert expected_final_bar_df.equals(pd.read_parquet(processed_config.get(source_key="FINAL_BAR")["local"]["file_path"])) finally: os.remove(raw_config.get(source_key="STAGED_FOO")["local"]["file_path"]) os.remove(raw_config.get(source_key="STAGED_BAR")["local"]["file_path"]) os.remove(processed_config.get(source_key="FINAL_FOO")["local"]["file_path"]) os.remove(processed_config.get(source_key="FINAL_BAR")["local"]["file_path"]) ``` ## Last notes Hope this was helpful. Please do reach out with comments and your views about how the library or the docs can be improved, and by all means, come along and contribute to our project!


نیازمندی

مقدار نام
>=1.22.24 awscli
>=1.20.24 boto3
>=0.8.0 fastparquet
==2022.3.0 fsspec
~=2.0.2 kafka-python
>=1.7.0 logzero
>=1.0.2 magic-logger
>=1.2.4 pandas
~=2.9.3 psycopg2-binary
>=7.0.0 pyarrow
~=2.0.1 python-json-logger
~=5.4.1 PyYAML
==0.4.2 s3fs
~=3.17.2 simplejson
~=1.4.11 SQLAlchemy
~=3.7.0 tables
~=1.10.2 pydantic


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl dynamicio-4.3.3:

    pip install dynamicio-4.3.3.whl


نصب پکیج tar.gz dynamicio-4.3.3:

    pip install dynamicio-4.3.3.tar.gz