معرفی شرکت ها


dynamic-topic-modeling-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Run dynamic topic modeling
ویژگی مقدار
سیستم عامل -
نام فایل dynamic-topic-modeling-1.1.0
نام dynamic-topic-modeling
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jiaxiang Li and Shuyi Wang and Svitlana Galeshchuk
ایمیل نویسنده alex.lijiaxiang@foxmail.com
آدرس صفحه اصلی https://github.com/JiaxiangBU/dynamic_topic_modeling
آدرس اینترنتی https://pypi.org/project/dynamic-topic-modeling/
مجوز Apache Software License 2.0
# dynamic_topic_modeling > Run dynamic topic modeling. <!-- README.md is generated from README.Rmd. Please edit that file --> <!-- badges: start --> [![PyPI version](https://badge.fury.io/py/dynamic-topic-modeling.svg)](https://badge.fury.io/py/dynamic-topic-modeling) [![DOI](https://zenodo.org/badge/238671296.svg)](https://zenodo.org/badge/latestdoi/238671296) <!-- badges: end --> The goal of 'wei_lda_debate' is to build Latent Dirichlet Allocation models based on 'sklearn' and 'gensim' framework, and Dynamic Topic Model(Blei and Lafferty 2006) based on 'gensim' framework. I decide to build a Python package 'dynamic_topic_modeling', so this reposority will be updated and 'wei_lda_debate' is depreciated. The new reposority path is <https://github.com/JiaxiangBU/dynamic_topic_modeling.git>. To build this package, I borrow from 1. 'wei_lda_debate'(Wang 2018) to build LDA framework 2. 'dtmvisual'(Svitlana 2019) to build the visualization framework. Moreover, this package seems like a visualiztaion tutorial using jupyter notebook for 'dtmvisual'. 1. [LDA based on sklearn](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/sklearn-lda.ipynb) 2. [LDA based on gensim](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/gensim-lda.ipynb) 3. [Dynamic Topic Modeling](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/dtm.ipynb) 4. [Data Analysis on Demi Gods and Semi Devils using Dynamic Topic Modeling](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/demo.ipynb) Jiaxiang Li. (2020, February 9). JiaxiangBU/dynamic_topic_modeling: dynamic_topic_modeling 1.1.0 (Version v1.1.0). Zenodo. <http://doi.org/10.5281/zenodo.3660401> ``` @software{jiaxiang_li_2020_3660401, author = {Jiaxiang Li}, title = {{JiaxiangBU/dynamic_topic_modeling: dynamic_topic_modeling 1.1.0}}, month = feb, year = 2020, publisher = {Zenodo}, version = {v1.1.0}, doi = {10.5281/zenodo.3660401}, url = {https://doi.org/10.5281/zenodo.3660401} } ``` If you use dynamic_topic_modeling, I would be very grateful if you can add a citation in your published work. By citing dynamic_topic_modeling, beyond acknowledging the work, you contribute to make it more visible and guarantee its growing and sustainability. For citation, please use the BibTex or the citation content. ## Install `pip install dynamic_topic_modeling` ## How to use 1. [LDA based on sklearn](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/sklearn-lda.ipynb) 2. [LDA based on gensim](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/gensim-lda.ipynb) 3. [Dynamic Topic Modeling](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/dtm.ipynb) 4. [Data Analysis on Demi Gods and Semi Devils using Dynamic Topic Modeling](https://nbviewer.jupyter.org/urls/jiaxiangbu.github.io/dynamic_topic_modeling/demo.ipynb) Jiaxiang Li. (2020, February 9). JiaxiangBU/dynamic\_topic\_modeling: dynamic\_topic\_modeling 1.1.0 (Version v1.1.0). Zenodo. <http://doi.org/10.5281/zenodo.3660401> ``` @software{jiaxiang_li_2020_3660401, author = {Jiaxiang Li}, title = {{JiaxiangBU/dynamic\_topic\_modeling: dynamic\_topic\_modeling 1.1.0}}, month = feb, year = 2020, publisher = {Zenodo}, version = {v1.1.0}, doi = {10.5281/zenodo.3660401}, url = {https://doi.org/10.5281/zenodo.3660401} } ``` If you use dynamic\_topic\_modeling, I would be very grateful if you can add a citation in your published work. By citing dynamic\_topic\_modeling, beyond acknowledging the work, you contribute to make it more visible and guarantee its growing and sustainability. For citation, please use the BibTex or the citation content. <h4 align="center"> **Code of Conduct** </h4> <h6 align="center"> Please note that the `dynamic_topic_modeling` project is released with a [Contributor Code of Conduct](https://github.com/JiaxiangBU/dynamic_topic_modeling/blob/master/CODE_OF_CONDUCT.md).<br>By contributing to this project, you agree to abide by its terms. </h6> <h4 align="center"> **License** </h4> <h6 align="center"> Apache License c [Jiaxiang Li;Shuyi Wang;Svitlana Galeshchuk](https://github.com/JiaxiangBU/dynamic_topic_modeling/blob/master/LICENSE.md) </h6> <div id="refs" class="references"> <div id="ref-Blei2006Dynamic"> Blei, David M., and John D. Lafferty. 2006. "Dynamic Topic Models." In *Machine Learning, Proceedings of the Twenty-Third International Conference (Icml 2006), Pittsburgh, Pennsylvania, Usa, June 25-29, 2006*. </div> <div id="ref-Svitlana_2019"> Svitlana. 2019. "Dtmvisual: This Package Consists of Functionalities for Dynamic Topic Modelling and Its Visualization." GitHub. 2019. <https://github.com/GSukr/dtmvisual>. </div> <div id="ref-Shuyi_Wang2018"> Wang, Shuyi. 2018. GitHub. 2018. <https://github.com/wshuyi/wei_lda_debate>. </div> </div>


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl dynamic-topic-modeling-1.1.0:

    pip install dynamic-topic-modeling-1.1.0.whl


نصب پکیج tar.gz dynamic-topic-modeling-1.1.0:

    pip install dynamic-topic-modeling-1.1.0.tar.gz