معرفی شرکت ها


dworp-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Agent-based modeling framework
ویژگی مقدار
سیستم عامل -
نام فایل dworp-0.1.0
نام dworp
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Cash Costello
ایمیل نویسنده cash.costello@jhuapl.edu
آدرس صفحه اصلی https://github.com/ACI-ESP/dworp
آدرس اینترنتی https://pypi.org/project/dworp/
مجوز BSD
[![Build Status](https://travis-ci.org/ACI-ESP/dworp.svg)](https://travis-ci.org/ACI-ESP/dworp) [![Coverage Status](https://img.shields.io/coveralls/github/ACI-ESP/dworp.svg)](https://coveralls.io/github/ACI-ESP/dworp) Dworp ============= Flexible framework for building agent-based modeling simulations. Requirements -------------- * python 3 Installation -------------- Install using pip (maybe be pip3 on some platforms): ```bash pip install dworp ``` To install with the optional plotting capability: ```bash pip install dworp[plot] ``` This will install dependencies required by `dworp.plot` (currently only matplotlib). Using --------------- Dworp defines basic interfaces for building simulations and provides some default components to support rapid creation of agent-based models. ### Agent An `Agent` updates its state in the `step()` function. The update may depend on the environment, its neighbors, past history, or other features. An agent has two optional functions `init()` and `complete()`. The `init()` function is called when an agent is added to the simulation. The `complete()` function is called at the end of a time step. ```python class MyAgent(dworp.Agent): def step(self, now, env): # ToDo add example here pass ``` #### Visibility of Agent State When agents are updating their state based on their neighbors' state, you may want to use a two stage update mechanism. In the first stage, the agents update their state privately so that their neighbors cannot see the new state. In the second stage, the agents make that state public to prepare for the next time step. ### Environment The `Environment` captures all simulation state that does not live in the agents. This includes serving as a container for network or spatial information for determining neighbors. ### Time `Time` drives the simulation and implements an iterator interface. It can be fixed in length or infinite. Time steps can be fixed in length or variable. Time can be integer or floating point. ### Space Agents can observe or interact with other agents based on neighborhoods. A neighborhood may be defined on a network using various graph frameworks like igraph or snap. A neighborhood can also be spatially defined on a grid or continuous space. ### Terminator To stop the simulation when some condition is met, use a `Terminator`. ### Schedule The order that agents update and which agents update is determined by the `Scheduler`. Some basic schedulers are provided for round robin updates in random order or uniformly sampling. ### Observer An `Observer` runs after each time step. It is designed for capturing data for further processing. It has access to the agents and the environment. Multiple observers can be chained together using `ChainedObserver`. ### Simulation The `Simulation` interface defines a single realization of an agent-based simulation. Basic implementations for single stage and double stage updates are provided. Usually, you will want to inherit from one of those to define your simulation. ### Logging Each component has its own logger: ```python self.logger.info("Agent {} set activity to {}".format(self.agent_id, self.activity)) ``` The logging level can be controlled at the framework level: ```python logging.getLogger('dworp').setLevel(logging.WARN) ``` or at the individual component level: ```python logging.getLogger('dworp.agent').setLevel(logging.DEBUG) ``` For more information on log levels or log configuration, read the [python logging docs](https://docs.python.org/3/library/logging.html). Examples ------------ The best way to learn the framework is by looking at the example models and their documentation. Testing ------------- Install the test requirements: ```bash pip install -r test_requirements.txt ``` Then to run the tests (while in the base directory): ```bash nosetests ``` This will run all the tests. To skip the plotting unit tests which require matplotlib, do this: ```bash nosetests -a '!plot' ``` To get a report on unit test coverage: ```bash nosetests --with-coverage --cover-package=dworp ``` Development ----------- To install in editable model so that changes to the framework are instantly reflected: ```bash pip install -e . ``` The code mostly follows the [PEP8 coding standard](https://www.python.org/dev/peps/pep-0008/). If you are using PyCharm, it will highlight PEP8 issues. You can also manually run style checks with flake8 (pip install flake8): ```bash flake8 dworp ``` The docstrings are using the [Google standard](http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html).


نیازمندی

مقدار نام
- numpy
xtr matplotlib;


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl dworp-0.1.0:

    pip install dworp-0.1.0.whl


نصب پکیج tar.gz dworp-0.1.0:

    pip install dworp-0.1.0.tar.gz