معرفی شرکت ها


dvg-utils-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DeepVisionGuru utilities for image/video capturing and processing
ویژگی مقدار
سیستم عامل -
نام فایل dvg-utils-0.1.2
نام dvg-utils
نسخه کتابخانه 0.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jarosław Gilewski
ایمیل نویسنده jgilewski@jagin.pl
آدرس صفحه اصلی https://github.com/jagin/dvg-utils
آدرس اینترنتی https://pypi.org/project/dvg-utils/
مجوز MIT
# dvg-utils > Go Deep with your Vision **dvg-utils** is a set of tools to help you easily build your image and video processing pipeline using OpenCV and Python. With an easy configuration file and implementation modules you can try your computer vision pipeline on different devices like webcams, RaspberryPi Camera or camera connected to NVIDIA Jetson device (Nano, TX2, XAVIER) through GStreamer and more. The library provides a handful of examples to start from. ## Getting Started These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. ### Prerequisites I suggest using Python virtual environment. Virtual environments will allow you to run independent Python environments in isolation on your system. Please take a look at [this article on RealPython](https://realpython.com/python-virtual-environments-a-primer/). $ pip install tqdm pyyaml numpy For OpenCV installation steps please look at [OpenCV Tutorials, Resources, and Guides](https://www.pyimagesearch.com/opencv-tutorials-resources-guides/). Mostly: $ pip install opencv-python or $ pip install opencv-contrib-python if you need both main and contrib modules should work. You can also try to play hard and [compile OpenCV with CUDA](https://www.pyimagesearch.com/2020/02/03/how-to-use-opencvs-dnn-module-with-nvidia-gpus-cuda-and-cudnn/) (if you got GPU on your board). **NVIDIA Jetson** devices with *JetPack SDK* have OpenCV already installed. For more info about OpenCV on Jetson platform looky [here](https://www.jetsonhacks.com/2019/11/15/5-things-about-opencv-on-jetson/). For **Raspberry Pi Buster**, install OpenCV with the help of this article: [Install OpenCV 4 on Raspberry Pi 4 and Raspbian Buster](https://www.pyimagesearch.com/2019/09/16/install-opencv-4-on-raspberry-pi-4-and-raspbian-buster/) from the wonderful [PyImageSearch](https://www.pyimagesearch.com) blog. ### Installation $ pip install dvg-utils ### Development setup We can install the package locally (for use on our system), with: $ pip install . We can also install the package with a symlink, so that changes to the source files will be immediately available to other users of the package on our system: $ pip install -e . ## Running tests Running tests requires `pytest` package to be installed. $ pip install pytest $ make test ## Command-line tool After `dvg-utils` installation, you get access to `dvg-utils` command which allows you to: - convert a video file to set of images: $ dvg-utils v2i -i assets/videos/faces.mp4 -o output --display - convert a set of frame images to a video file: $ dvg-utils i2v -i output -o output/my_new_file.avi --display - plot metrics (see examples below): $ dvg-utils pm --input output/metrics_1.csv --input output/metrics_2.csv ## Examples ### Preparation $ pip install matplotlib $ pip install scipy $ pip install dlib If you run examples on Raspberry Pi Camera you will need to: $ pip install picamera ### Capture single image $ python ./examples/capture_image.py -i assets/images/friends ### Capture video stream $ python ./examples/capture_video.py ### Capture two video stream from web cameras $ python ./examples/capture_multi_video.py ### Detect faces in images $ python ./examples/detect_face_image.py -i assets/images/friends ### Detect faces in a video stream: $ python ./examples/detect_face_video.py --metrics output/metrics_no_pipeline.csv or using pipeline implementation: $ python ./examples/detect_face_video.py --pipeline --metrics output/metrics_with_pipeline.csv ### Compare the collected metrics $ dvg-utils pm --input output/metrics_no_pipeline.csv --input output/metrics_with_pipeline.csv ### Detect motion in a video stream $ python ./examples/detect_motion_video.py ### Detect object in a video stream $ python ./examples/detect_object_video.py ### Track object in a video stream $ python ./examples/track_object_video.py ### Count object in a video stream $ python ./examples/count_object_video.py ## Acknowledgments * [PyImageSearch](https://www.pyimagesearch.com/) for ideas * [pixabay](https://pixabay.com/) for assets ## License This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl dvg-utils-0.1.2:

    pip install dvg-utils-0.1.2.whl


نصب پکیج tar.gz dvg-utils-0.1.2:

    pip install dvg-utils-0.1.2.tar.gz