معرفی شرکت ها


dvclive-2.8.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Metric logger for ML projects.
ویژگی مقدار
سیستم عامل -
نام فایل dvclive-2.8.1
نام dvclive
نسخه کتابخانه 2.8.1
نگهدارنده []
ایمیل نگهدارنده ['support@dvc.org']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/iterative/dvclive
آدرس اینترنتی https://pypi.org/project/dvclive/
مجوز Apache-2.0
# DVCLive [![PyPI](https://img.shields.io/pypi/v/dvclive.svg)](https://pypi.org/project/dvclive/) [![Status](https://img.shields.io/pypi/status/dvclive.svg)](https://pypi.org/project/dvclive/) [![Python Version](https://img.shields.io/pypi/pyversions/dvclive)](https://pypi.org/project/dvclive) [![License](https://img.shields.io/pypi/l/dvclive)](https://opensource.org/licenses/Apache-2.0) [![Tests](https://github.com/iterative/dvclive/workflows/Tests/badge.svg?branch=main)](https://github.com/iterative/dvclive/actions?workflow=Tests) [![Codecov](https://codecov.io/gh/iterative/dvclive/branch/main/graph/badge.svg)](https://app.codecov.io/gh/iterative/dvclive) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) DVCLive is a Python library for logging machine learning metrics and other metadata in simple file formats, which is fully compatible with DVC. # [Documentation](https://dvc.org/doc/dvclive) - [Get Started](https://dvc.org/doc/start/experiments) - [How it Works](https://dvc.org/doc/dvclive/how-it-works) - [API Reference](https://dvc.org/doc/dvclive/live) - [Integrations](https://dvc.org/doc/dvclive/ml-frameworks) ______________________________________________________________________ # Quickstart <p align='center'> <a href="https://colab.research.google.com/github/iterative/dvclive/blob/main/examples/DVCLive-Quickstart.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" /></a> </p> ## Install *dvclive* ```console $ pip install dvclive ``` ## Initialize DVC Repository ```console $ git init $ dvc init $ git commit -m "DVC init" ``` ## Example code Copy the snippet below as a basic example of the API usage: ```python # train.py import random import sys from dvclive import Live with Live(save_dvc_exp=True) as live: epochs = int(sys.argv[1]) live.log_param("epochs", epochs) for epoch in range(epochs): live.log_metric("train/accuracy", epoch + random.random()) live.log_metric("train/loss", epochs - epoch - random.random()) live.log_metric("val/accuracy",epoch + random.random() ) live.log_metric("val/loss", epochs - epoch - random.random()) live.next_step() ``` See [Integrations](https://dvc.org/doc/dvclive/ml-frameworks) for examples using DVCLive alongside different ML Frameworks. ## Running Run couple of times passing different values: ```console $ python train.py 5 $ python train.py 5 $ python train.py 7 ``` ## Comparing DVCLive outputs can be rendered in different ways: ### DVC CLI You can use [dvc exp show](https://dvc.org/doc/command-reference/exp/show) and [dvc plots](https://dvc.org/doc/command-reference/plots) to compare and visualize metrics, parameters and plots across experiments: ```console $ dvc exp show ``` ``` ───────────────────────────────────────────────────────────────────────────────────────────────────────────── Experiment Created train.accuracy train.loss val.accuracy val.loss step epochs ───────────────────────────────────────────────────────────────────────────────────────────────────────────── workspace - 6.0109 0.23311 6.062 0.24321 6 7 master 08:50 PM - - - - - - ├── 4475845 [aulic-chiv] 08:56 PM 6.0109 0.23311 6.062 0.24321 6 7 ├── 7d4cef7 [yarer-tods] 08:56 PM 4.8551 0.82012 4.5555 0.033533 4 5 └── d503f8e [curst-chad] 08:56 PM 4.9768 0.070585 4.0773 0.46639 4 5 ───────────────────────────────────────────────────────────────────────────────────────────────────────────── ``` ```console $ dvc plots diff $(dvc exp list --names-only) --open ``` ![dvc plots diff](./docs/dvc_plots_diff.png) ### DVC Extension for VS Code Inside the [DVC Extension for VS Code](https://marketplace.visualstudio.com/items?itemName=Iterative.dvc), you can compare and visualize results using the [Experiments](https://github.com/iterative/vscode-dvc/blob/main/extension/resources/walkthrough/experiments-table.md) and [Plots](https://github.com/iterative/vscode-dvc/blob/main/extension/resources/walkthrough/plots.md) views: ![VSCode Experiments](./docs/vscode_experiments.png) ![VSCode Plots](./docs/vscode_plots.png) While experiments are running, live updates will be displayed in both views. ### DVC Studio If you push the results to [DVC Studio](https://dvc.org/doc/studio), you can compare experiments against the entire repo history: ![Studio Compare](./docs/studio_compare.png) You can enable [Studio Live Experiments](https://dvc.org/doc/studio/user-guide/projects-and-experiments/live-metrics-and-plots) to see live updates while experiments are running. ______________________________________________________________________ # Comparison to related technologies **DVCLive** is an *ML Logger*, similar to: - [MLFlow](https://mlflow.org/) - [Weights & Biases](https://wandb.ai/site) - [Neptune](https://neptune.ai/) The main difference with those *ML Loggers* is that **DVCLive** does not **require** any additional services or servers to run. Logged metrics, parameters, and plots are stored as plain text files that can be versioned by tools like Git or tracked as pointers to files in DVC storage. You can then use different [options](#comparing) to visualize the metrics, parameters, and plots across experiments. ______________________________________________________________________ # Contributing Contributions are very welcome. To learn more, see the [Contributor Guide](CONTRIBUTING.rst). # License Distributed under the terms of the [Apache 2.0 license](https://opensource.org/licenses/Apache-2.0), *dvclive* is free and open source software.


نیازمندی

مقدار نام
>2.45.1 dvc
<1,>=0.7.0 dvc-studio-client
- funcy
- ruamel.yaml
- scmrepo
- numpy
- pillow
- mmcv
- tensorflow
- xgboost
- lightgbm
- transformers
- datasets
>22 catalyst
- fastai
>=1.9 pytorch-lightning
<2.1 torch
- optuna
- scikit-learn
- matplotlib
>22 catalyst
<8.0,>=7.2.0 pytest
<1.0,>=0.9.6 pytest-sugar
<4.0,>=3.0.0 pytest-cov
<4.0,>=3.8.2 pytest-mock
- numpy
- pillow
- scikit-learn
- matplotlib
- ipython
- mmcv
- tensorflow
- xgboost
- lightgbm
- transformers
- datasets
>22 catalyst
- fastai
>=1.9 pytorch-lightning
<2.1 torch
- optuna
>=1.1.1 mypy
- fastai
- transformers
- datasets
- numpy
- pillow
- lightgbm
- matplotlib
- mmcv
- optuna
- scikit-learn
>=1.9 pytorch-lightning
<2.1 torch
- scikit-learn
<8.0,>=7.2.0 pytest
<1.0,>=0.9.6 pytest-sugar
<4.0,>=3.0.0 pytest-cov
<4.0,>=3.8.2 pytest-mock
- numpy
- pillow
- scikit-learn
- matplotlib
- ipython
- tensorflow
- xgboost


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl dvclive-2.8.1:

    pip install dvclive-2.8.1.whl


نصب پکیج tar.gz dvclive-2.8.1:

    pip install dvclive-2.8.1.tar.gz