معرفی شرکت ها


dupandas-0.3.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

python package to deduplicate text data in pandas dataframe using flexible string matching and cleaning
ویژگی مقدار
سیستم عامل -
نام فایل dupandas-0.3.2
نام dupandas
نسخه کتابخانه 0.3.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Shivam Bansal
ایمیل نویسنده shivam5992@gmail.com
آدرس صفحه اصلی https://github.com/shivam5992/dupandas
آدرس اینترنتی https://pypi.org/project/dupandas/
مجوز MIT
# **dupandas:** data deduplication of text records in a pandas dataframe [![Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.](http://www.repostatus.org/badges/latest/wip.svg)](https://github.com/shivam5992/dupandas) [![Twitter Follow](https://img.shields.io/twitter/follow/shields_io.svg?style=social&label=Follow&maxAge=2592000)](https://twitter.com/shivamshaz) dupandas is a python package to perform data deduplication on columns of a pandas dataframe using flexible text matching. It is compatible with both versions of python (2.x and 3.x). dupandas can find duplicate any kinds of text records in the pandas data. It comprises of sophisticated Matchers that can handle spelling differences and phonetics. It also comprises of several Cleaners, which can be used to clean up the noise present in the text data such as punctuations, digits, casing etc. For fast computations, dupandas uses lucene based text indexing. In the input_config, if "indexing" = True, then it indexes the dataset in RAMDirectory which is used to identify and search similar strings. Check out the instructions of installing PyLucene below. The beautiful part of dupandas is that it's Matchers, Cleaners and Indexing functions can be used as standalone packages while working with text data. ## Installation Following python modules are required to use dupandas: **pandas, fuzzy, python-levenshtein** . These modules can be installed using pip command: ```python pip install dupandas pandas fuzzy python-levenshtein ``` **OR** if dependencies are already installed: ``` pip install dupandas ``` **OPTIONAL** For faster implementation dupandas with indexing feature is recommended. dupandas uses PuLucene for data indexing purposes. **PyLucene Installation:** Please note that for lucene indexing, java needs to be installed. Java 8 is recommended. Refer to [this](https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get) link ``` sudo apt-get update sudo apt-get install pylucene After Installation, edit ~/.bashrc file, and add the following line at the end export LD_LIBRARY_PATH=/usr/lib/jvm/java_folder_name/jre/lib/amd64/server example: export LD_LIBRARY_PATH=/usr/lib/jvm/java-8-oracle/jre/lib/amd64/server ``` **Note:** The use of indexing can reduce the overall time of computation and execution to one third of original. ## Usage : dupandas dupandas using default Matchers and Cleaners, Default Matcher and Cleaners are Exact Match and No Cleaning respectively. ``` python from dupandas import Dedupe dupe = Dedupe() input_config = { 'input_data' : pandas_dataframe, 'column' : 'column_name_to_deduplicate', '_id' : 'unique_id_column_of_dataset', } results = dupe.dedupe(input_config) ``` dupandas using custom Cleaner and Matcher configs ``` python from dupandas import Dedupe clean_config = { 'lower' : True, 'punctuation' : True, 'whitespace' : True, 'digit' : True } match_config = { 'exact' : False, 'levenshtein' : True, 'soundex' : False, 'nysiis' : False} dupe = Dedupe(clean_config = clean_config, match_config = match_config) input_config = { 'input_data' : pandas_dataframe, 'column' : 'column_name_to_deduplicate', '_id' : 'unique_id_column_of_dataset', } results = dupe.dedupe(input_config) ``` Other options in input_config ```python input_config = { 'input_data' : pandas_dataframe, 'column' : 'column_name_to_deduplicate', '_id' : 'unique_id_column_of_dataset', 'score_column' : 'name_of_the_column_for_confidence_score', 'threshold' : 0.75, # float value of threshold 'unique_pairs' : True, # boolean to get unique (A=B) or duplicate (A=B and B=A) results 'indexing' : False # Boolean to set lucene indexing = True / False, Default: False } ``` ## Usage : standalone Cleaner class ```python from dupandas import Cleaner clean_config = { 'lower' : True, 'punctuation' : True, 'whitespace' : True, 'digit' : True } clean = Cleaner(clean_config) clean.clean_text("new Delhi 3#! 34 ") ``` ## Usage: standalone Matcher class ```python from dupandas import Matcher match_config = { 'exact' : False, 'levenshtein' : True, 'soundex' : False, 'nysiis' : False} match = Matcher(match_config) match.match_elements("new delhi", "newdeli") ``` ## Issues Thanks for checking this work, Yes ofcourse there is a scope of improvement, Feel free to submit issues and enhancement requests. ## Contributing #### ToDos 1. [ ] V2: Add Support for multi column match 2. [ ] V2: Add More Matchers, Cleaners 3. [ ] V2: Remove Library Dependencies 4. [ ] V2: Handle Longer Texts, Optimize Speed, Lucene Time Optimize, fix input bugs #### Steps 1. **Fork** the repo on GitHub 2. **Clone** the project to your own machine 3. **Commit** changes to your own branch 4. **Push** your work back up to your fork 5. Submit a **Pull request**


نحوه نصب


نصب پکیج whl dupandas-0.3.2:

    pip install dupandas-0.3.2.whl


نصب پکیج tar.gz dupandas-0.3.2:

    pip install dupandas-0.3.2.tar.gz