معرفی شرکت ها


dunedn-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ProtoDUNE raw data denoising with DL
ویژگی مقدار
سیستم عامل -
نام فایل dunedn-1.0.1
نام dunedn
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده M. Rossi
ایمیل نویسنده marco.rossi@cern.ch
آدرس صفحه اصلی https://github.com/marcorossi5/DUNEdn.git
آدرس اینترنتی https://pypi.org/project/dunedn/
مجوز -
# DUNEdn [![arxiv](https://img.shields.io/badge/arXiv-hep--ph%2F2103.01596-%23B31B1B.svg)](https://arxiv.org/abs/2103.01596) [![DOI](https://zenodo.org/badge/248536693.svg)](https://zenodo.org/badge/latestdoi/248536693) ![pytest](https://github.com/N3PDF/pdfflow/workflows/pytest/badge.svg) If you use this software please cite this [paper](https://doi.org/10.1007/s41781-021-00077-9) ```bibtex @article{dunedn, author={Rossi, Marco and Vallecorsa, Sofia}, title={Deep Learning Strategies for ProtoDUNE Raw Data Denoising}, journal={Computing and Software for Big Science}, year={2022}, month={Jan}, day={07}, volume={6}, number={1}, numpages={9}, issn={2510-2044}, doi={10.1007/s41781-021-00077-9}, url={https://doi.org/10.1007/s41781-021-00077-9} } ``` DUNEdn is a denoising algorithm for ProtoDUNE-SP raw data with Neural Networks. ## Installation The package can be installed with Python's pip package manager: ```bash git clone https://github.com/marcorossi5/DUNEdn.git cd DUNEdn pip install . ``` This process will copy the DUNEdn program to your environment python path. ### Note The [saved_models](saved_models) directory contains the checkpoints to reproduce the results presented in [arXiv:2103.01596](https://arxiv.org/abs/2103.01596). Since some of the saved models files are quite large (~100 MB), they are uploaded via [git-lfs](https://git-lfs.github.com/). when cloning the repo, it is possible to download pointers to those large files rather than the whole binaries. This can be achieved adding the flag `--config lfs.fetchexclude="*.pth*"` to the `git clone` command above. ### Requirements DUNEdn requires the following packages: - python3 - numpy - pytorch - torchvision - matplotlib - hyperopt ## Running the code In order to launch the code ```bash dunedn <subcommand> [options] ``` Valid subcommands are: `preprocess|train|inference`. Use `dunedn <subcommand> --help` to print the correspondent help message. For example, the help message for `train` subcommand is: ```bash $ dunedn train --help usage: dunedn train [-h] [--output OUTPUT] [--force] configcard Train model loading settings from configcard. positional arguments: configcard yaml configcard path optional arguments: -h, --help show this help message and exit --output OUTPUT output folder --force overwrite existing files if present ``` ### Configuration cards Models' parameter settings are stored in configcards. The [configcards](configcards) folder contains some examples. These can be extended providing the path to user defined cards directly to the command line interface. Setting the `DUNEDN_SEARCH_PATH` environment variable it is possible to let DUNEdn looking for configcards into different directories automatically. More on the search behavior can be found at the `get_configcard_path` function's docstring in the [utils/ultis.py](src/dunedn/utils/utils.py) file. ### Preprocess a dataset At first, a dataset directory should have the following structure: ```text dataset directory tree structure: dataset_dir |-- train | |--- evts |-- val | |--- evts |-- test | |--- evts ``` where each `evts` folder contains a collection of ProtoDUNE events stored as raw digits (numpy array format). It is possible to generate the correspondent dataset to train an USCG or a GCNN network with the command: ```bash dunedn preprocess <configcard.yaml> --dir_name <dataset directory> ``` This will modify the dataset directory tree in the following way: ```txt dataset directory tree structure: dataset_dir |-- train | |--- evts | |-- planes (preprocess product) | |-- crops (preprocess product) |-- val | |--- evts | |--- planes (preprocess product) |-- test | |--- evts | |--- planes (preprocess product) ``` ### Training a model After specifying parameters inside a configuration card, leverage DUNEdn to train the correspondent model with: ```bash dunedn train <configcard.yaml> ``` The output directory is set by default to `output`. Optionally, the `DUNEDN_OUTPUT_PATH` environment variable could be set to override this choice. ### Inference ```bash dunedn inference -i <input.npy> -o <output.npy> -m <modeltype> [--model_path <checkpoint.pth>] ``` DUNEdn inference takes the `input.npy` array and forwards it to the desired model `modeltype`. The output array is saved to `output.npy`. If a checkpoint directory path is given with the optional `--model_path` flag, a saved model checkpoint could be loaded for inference. The checkpoint directory should have the following structure: ```text model_path |-- collection | |-- <ckpt directory name>_dn_collection.pth |-- induction | |-- <ckpt directory name>_dn_induction.pth ``` On the other hand, if `--model_path` is not specified, an un-trained network is issued. ### Benchmark The paper results can be reproduced through the [compute_denoising_performance.py](benchmarks/compute_denoising_performance.py) benchmark. Please, see the script's docstring for further information.


نیازمندی

مقدار نام
- numpy
- pyyaml
- torch
- torchvision
- matplotlib
- hyperopt


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl dunedn-1.0.1:

    pip install dunedn-1.0.1.whl


نصب پکیج tar.gz dunedn-1.0.1:

    pip install dunedn-1.0.1.tar.gz