معرفی شرکت ها


duckingit-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A framework to leverage clusters of serverless functions for analytics. Powered by DuckDB
ویژگی مقدار
سیستم عامل -
نام فایل duckingit-0.0.4
نام duckingit
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Tobias Egelund <egelundtobias@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/duckingit/
مجوز -
![logo](logo.png) A framework to leverage the endless capabilities of serverless computing powered by DuckDB. Please note that the framework currently supports only AWS Lambda functions. To use the framework, you must first create a Lambda layer of DuckDB that can be used within a Lambda function. Additionally, you must create a Lambda Executor function that can execute the actual DuckDB SQL. Once you've completed these setup steps, you can leverage the power of serverless functions through the SDK written in Python to perform analytics on a Data Lake. While Apache Spark can perform similar (and more advanced) functions, the cost of running Spark clusters can be prohibitively expensive. As a result, a much more affordable alternative is to use a cluster of serverless functions, such as Lambda functions, to perform the same actions as Spark, without the need to turn them off manually. ## Installation To install the Python SDK from PyPI execute the command below. Nonetheless, it's recommended that you first review the [setup](/README.md#setup) section in order to properly utilize the package. ```bash pip install duckingit ``` ## Setup Before setting up the infrastructure, please make sure that you have installed both Docker and Terraform. To interact with the DuckDB instances, the entire infrastructure must be set up first because the SDK functions as an entryway to the serverless function cluster. DuckDB is packaged as a layer to be pre-installed in AWS Lambda, similar to other packages. Docker must be installed to create the layer. Running the command below will generate a duckdb-layer.zip file in the image/release/ folder: ```bash make release-image ``` To set up the infrastructure on AWS, follow the commands below: ```bash make release-infra ``` After waiting for a minute or two, the infrastructure should be set up, and you can check for the presence of a Lambda function called DuckExecutor and a lambda layer called duckdb under Lambda layers. Once you have verified the above components, the infrastructure should be set up and fully operational. ## Usage The developer API is inspired by the API of Spark, but it uses Python's naming conventions because the framework is implemented in Python. ```python from duckingit import DuckSession, DuckConfig query = "SELECT * FROM READ_PARQUET(['s3://BUCKET_NAME/2023/*'])" # Following command will print possible configurations DuckConfig.show_configurations # Configuration conf = DuckConfig() \ .set("aws_lambda.FunctionName", "TestFunc") \ .set("aws_lambda.MemorySize", 256) \ .set("aws_lambda.WarmUp", True) # Creates an entrypoint to use serverless DuckDB instances session = DuckSession(conf=conf) # Create a Dataset from the query ds = session.sql(query=query) # Execute SQL query ds.show() ``` ... To be continued ## Contribution Thank you for taking an interest in my project on GitHub. I am always looking for new contributors to help me improve and evolve my codebase. If you're interested in contributing, feel free to fork the repository and submit a pull request with your changes. I welcome all kinds of contributions, from bug fixes to feature additions and documentation improvements. If you're not sure where to start, take a look at the issues tab or reach out to us for guidance. Let's collaborate and make our project better together!


نیازمندی

مقدار نام
- boto3
- duckdb
- sqlglot
- pyarrow


زبان مورد نیاز

مقدار نام
>=3.10 Python


نحوه نصب


نصب پکیج whl duckingit-0.0.4:

    pip install duckingit-0.0.4.whl


نصب پکیج tar.gz duckingit-0.0.4:

    pip install duckingit-0.0.4.tar.gz