معرفی شرکت ها


dtmpy-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fast Dynamic Topic Modeling with Python
ویژگی مقدار
سیستم عامل -
نام فایل dtmpy-0.1.2
نام dtmpy
نسخه کتابخانه 0.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jeff Moore
ایمیل نویسنده jmoore@manifold.ai
آدرس صفحه اصلی https://github.com/jeffmm/dtmpy.git
آدرس اینترنتی https://pypi.org/project/dtmpy/
مجوز -
# dtmpy A Python module for doing fast Dynamic Topic Modeling. This module wraps the original C/C++ code by David M. Blei and Sean M. Gerrish. I've refactored the original code to wrap the main function call in a class `DTM` that has Python bindings. Other code changes are listed below. ## Usage Below is an example of how to use this package. Reference the `dtmpy.DTM` docstring for all possible keyword arguments. ```python import dtmpy # Initialize DTM model flags dtm = dtmpy.DTM(corpus_prefix="model_inputs/file_prefix", output_name="model_outputs", n_topics=10) # Fit the model and write outputs from bag-of-words corpus and timestamps dtm.fit(my_corpus, n_docs_per_timestamp) # The proportion of topic 5 in document 3 topic_mixtures = dtm.read_topic_mixtures() print(topic_mixtures[3, 5]) # The probability of term 32 being in topic 5 at time 7 topic5 = dtm.read_topic_term_probabilities(5) print(topic5[32, 7]) ``` There is also a sample `seq` and `mult` file in the `example` directory, which can be fit as test case using the below code: ```python import dtmpy dtm = dtmpy.DTM(corpus_prefix="example/test", output_name="model_outputs") # Load corpus and time intervals from existing seq and mult files corpus, time_slices = dtm.read_corpus() # Fit the dynamic topic model dtm.fit(corpus, time_slices) ``` ## Install Install dependencies: - `cmake` - `libgsl-dev` - `pybind11-dev` These can be installed on Ubuntu with: ``` apt-get install cmake libgsl-dev pybind11-dev ``` or on macOS using [Homebrew](https://brew.sh/) with: ``` brew install cmake gsl pybind11 ``` After installing the dependencies, `dtmpy` can be installed with: ``` pip install dtmpy ``` or directly from source: ``` git clone https://github.com/jeffmm/dtmpy cd dtmpy pip install . ``` ## Model inputs ### Fitting a corpus The `dtmpy.DTM` class can fit a DTM model to a bag-of-words corpus that is the form of a list of lists (one list for each document), with each document list containing tuples of unique words in the document and their counts. As a simple example: ```python # document 1 is the sentence "foo bar bar baz" # document 2 is the sentence "bar baz bang baz" dictionary = {0: "foo", 1: "bar", 2: "baz", 3: "bang"} bow_corpus = [[(0, 1), (1, 2), (2, 1)], [(1, 1), (2, 2), (3, 1)]] ``` The `bow_corpus` parameter can be passed to the `DTM.fit` method. The dictionary is only used as a convenience for post processing. The documents in the corpus should be listed in chronological order. `DTM.fit` also takes a list of number of documents to include per each time interval (time slice of the corpus) in the DTM model, `time_slices`. Optionally, you can also pass the number of time slices you want to use, `n_time_slices`, which will cause the documents to be evenly spread over all time intervals. ### Mult and seq files The original Dynamic Topic Model takes two files as inputs, which are automatically generated from the corpus and time slices when passed to the `DTM.fit` method: - `foo-mult.dat` (the `mult` file) - `foo-seq.dat` (the `seq` file) If the above files are in the directory `bar` relative to the working directory, then the `corpus_prefix` argument will be `bar/foo`. If the dataset consists of `N` docs, then the `mult` file is an `N`-length file where line `i` lists the number of unique words in document `i` and the `index:count` for each word in the document, like so: ``` unique_word_count_doc_1 index_11:count_11 index_12:count_12 ... index_1n:count_1n unique_word_count_doc_2 index_21:count_21 index_22:count_22 ... ... unique_word_count_doc_N index_N1:count_N1 index_N2:count_N2 ... ``` Where each word index corresponds to a unique word in the vocabulary (ie listed in a dictionary somewhere) The order of the docs in `mult` should be chronological, in order to correspond to the documents numbered in the `seq` file. The `seq` file gives the number of documents that correspond to each time slice in the DTM, and is of the form ``` n_times number_docs_time_1 number_docs_time_2 ... number_docs_time_n_times ``` Two additional files that are useful to have somewhere are: - file with all of the words in the vocabulary, arranged in the same order as the word indices - a file with information on each of the documents, arranged in the same order as the docs in the `mult` file. ### Loading previous inputs Previously-generated `mult` and `seq` files can be read and used to generate corpus and time slices lists to be used in other model fits. This can be done by using the `DTM.read_corpus` method. Alternatively, the `DTM.load` method can be used to prepare the class to read previously-generated model outputs. ## Model outputs ### Reading model outputs The raw output files (discussed in the next section) can be read into `numpy` arrays. The `DTM.read_topic_term_probabilities` method is used to see the estimated probabilities that terms within the corpus appeared in the specified topic at each time interval. `DTM.read_topic_mixtures` is used to see the estimated proportions of each topic within each document. See the Usage section above for an example. ### Raw output files The model outputs the following files to the directory specified by the `corpus_prefix` and `output_name` arguments. - `topic-xxx-var-e-log-prob.dat`: the e-betas (word distributions) for topic xxx for all times. This is in row-major form, e.g. (in R): ```r a = scan("topic-002-var-e-log-prob.dat") b = matrix(a, ncol=10, byrow=TRUE) # The probability of term 100 in topic 2 at time 3: exp(b[100, 3]) ``` - `gam.dat`: The gammas associated with each document. Divide these by the sum for each document to get expected topic mixtures. ```r a = scan("gam.dat") b = matrix(a, ncol=10, byrow=TRUE) rs = rowSums(b) e.theta = b / rs # Proportion of topic 5 in document 3: e.theta[3, 5] ``` If you are running this software in "dim" mode to find document influence, it will also create the following files: - `influence_time-yyy` : the influence of documents at time yyy for each topic, where time is based on in your `seq` file and the document index is given by the ordering of documents in the `mult` file. ```r a = scan("influence-time-010") b = matrix(a, ncol=10, byrow=TRUE) # The influence of the 2nd document on topic 5: b[2, 5] ``` ## Changes to the original code - Refactored original `main` function to be `fit` method of class `DTM` - Removed dependence of `gflags` and converted global flags to use extern variables that are initialized by `DTM`. - Added Python bindings to `DTM` class using `pybind11` - Better error handling to prevent commands like `exit` from crashing the Python kernel - Better use of `const` to limit number of compiler warnings - Changed some useful outputs for monitoring model fitting convergence to redirect to a `log.txt` file in the output directory rather than `stderr` - Fixed bug that made LDA initialization finish before converging or reaching its max iteration - More sane defaults: - changed `corpus_prefix` and `outname` to be required arguments - changed `ntopics` from -1.0 to 10 - changed `alpha` from -10 to 0.01 - changed `initialize_lda` flag to true # About the original Dynamic Topic Model code ## Dynamic Topic Models and the Document Influence Model This implements topics that change over time (Dynamic Topic Models) and a model of how individual documents predict that change. This code is the result of work by David M. Blei and Sean M. Gerrish. (C) Copyright 2006, David M. Blei (C) Copyright 2011, Sean M. Gerrish It includes software corresponding to models described in the following papers: [1] [D. Blei and J. Lafferty. Dynamic topic models. In Proceedings of the 23rd International Conference on Machine Learning, 2006.](http://www.cs.columbia.edu/~blei/papers/BleiLafferty2006a.pdf) [2] [S. Gerrish and D. Blei. A Language-based Approach to Measuring Scholarly Impact. In Proceedings of the 27th International Conference on Machine Learning, 2010.](http://www.cs.columbia.edu/~blei/papers/GerrishBlei2010.pdf) These files are part of DIM. DIM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. DIM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ---


نحوه نصب


نصب پکیج whl dtmpy-0.1.2:

    pip install dtmpy-0.1.2.whl


نصب پکیج tar.gz dtmpy-0.1.2:

    pip install dtmpy-0.1.2.tar.gz