معرفی شرکت ها


dsrt-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

High-level library for building and testing neural dialogue systems
ویژگی مقدار
سیستم عامل -
نام فایل dsrt-0.0.1
نام dsrt
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Samuel Barham, Nirat Saini
ایمیل نویسنده sbarham@terpmail.umd.edu, nirat@cs.umd.edu
آدرس صفحه اصلی https://github.com/sbarham/dsrt
آدرس اینترنتی https://pypi.org/project/dsrt/
مجوز MIT
# Neural DSRT: Neural dialogue systems for humans [![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/sbarham/dsrt/blob/master/LICENSE) Newborn from the University of Maryland, Neural DSRT (pronounced *dessert*) is a high-level neural dialogue systems API, written in __Python__ and running on top of familiar deep-learning (DL) and machine-learning (ML) libraries like [Keras](https://github.com/keras-team/keras), [TensorFlow](https://github.com/tensorflow/tensorflow), and [scikit-learn](https://github.com/scikit-learn/scikit-learn). It focuses on allowing for the easy construction, training, and testing of __neural dialogue models__. Its key purpose is *to enable rapid development and experimentation* in a burgeoning field otherwise bereft of high-level libraries with busy researchers in mind. <!-- Read the documentation at [Keras.io](https://keras.io) --> ## What is it for? __Neural DSRT__ is all about building end-to-end dialogue systems using state-of-the-art neural dialogue models. It is a new project (born at the University of Maryland in the waining days and weeks of March, 2018), and it still has a lot of growing to do. In order to help that growth along, we adopt a few guiding principles liberally from [Keras](https://github.com/keras-team/keras): - __User-friendliness.__ Ease-of-use should be front and center, the library should expose consistent & simple APIs, and should minimize the amount of work involved in getting common use-cases up and running. The focus should be on enabling rapid, hassle-free experimentation with neural dialog models. - __Modularity.__ Dialogue experiments, and their constituent components -- dataset wrappers, data preprocessors, neural dialogue models, conversation objects -- should alike be implemented as fully-configurable modules that can be plugged together with as few restrictions as possible. Experiments, and their components, should be richly configurable -- but components should fall back on sensible defaults, so that configuration should never be necessary - __Extensibility.__ New modules should be simple to add (as new classes and functions), and existing modules and scripts should provide ample and __liberally documented__ examples. ## How do I use it? 90 seconds to Neural DSRT *This quickstart guide has yet to be written -- but it should be coming soon.* <!-- >>>>>>> cde833a8db0adfd4306cc86f265e9e3da38d39c8 The core data structure of Keras is a __model__, a way to organize layers. The simplest type of model is the [`Sequential`](https://keras.io/getting-started/sequential-model-guide) model, a linear stack of layers. For more complex architectures, you should use the [Keras functional API](https://keras.io/getting-started/functional-api-guide), which allows to build arbitrary graphs of layers. Here is the `Sequential` model: ```python from keras.models import Sequential model = Sequential() ``` Stacking layers is as easy as `.add()`: ```python from keras.layers import Dense model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) ``` Once your model looks good, configure its learning process with `.compile()`: ```python model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) ``` If you need to, you can further configure your optimizer. A core principle of Keras is to make things reasonably simple, while allowing the user to be fully in control when they need to (the ultimate control being the easy extensibility of the source code). ```python model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)) ``` You can now iterate on your training data in batches: ```python # x_train and y_train are Numpy arrays --just like in the Scikit-Learn API. model.fit(x_train, y_train, epochs=5, batch_size=32) ``` Alternatively, you can feed batches to your model manually: ```python model.train_on_batch(x_batch, y_batch) ``` Evaluate your performance in one line: ```python loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) ``` Or generate predictions on new data: ```python classes = model.predict(x_test, batch_size=128) ``` Building a question answering system, an image classification model, a Neural Turing Machine, or any other model is just as fast. The ideas behind deep learning are simple, so why should their implementation be painful? For a more in-depth tutorial about Keras, you can check out: - [Getting started with the Sequential model](https://keras.io/getting-started/sequential-model-guide) - [Getting started with the functional API](https://keras.io/getting-started/functional-api-guide) In the [examples folder](https://github.com/keras-team/keras/tree/master/examples) of the repository, you will find more advanced models: question-answering with memory networks, text generation with stacked LSTMs, etc. --> ## How can I install it? Before attempting to install Neural DSRT, you'll need to install Keras (which it's built on): - [Keras installation instructions](https://keras.io/#installation) In installing Keras, you'll of course need to install a neural-network backend. We recommend TensorFlow: - [TensorFlow installation instructions](https://www.tensorflow.org/install/). Once you've done this, you're ready to install DSRT. Currently, the only way to do this is from the GitHub source. Thankfully, this is pretty easy, so long as you have `pip` installed on your machine (did we mention you'll need Python? you'll need Python -- we recommend the latest version of Python 3). Just in case, instructions for installing `pip` may be found here: - [pip installation instructions](https://pip.pypa.io/en/stable/installing/) Assuming you've followed up until this point, proceed to __clone DSRT__ using `git`: ```sh git clone https://github.com/sbarham/dsrt.git ``` Now, `cd` to the Neural DSRT folder and install using `pip`: ```sh cd dsrt sudo pip install . ``` It's as easy as that. Now you're ready to use Neural DSRT! # How can I help? As we mentioned above, DSRT is very young -- in fact, it's only a few weeks old at the moment. If you're a developer (and especially if you're confident with deep learning, machine learning, or neural dialogue systems) and you'd like to help, please contact the original authors directly at `sbarham@cs.umd.edu`. We'd love to collaborate with you.


نیازمندی

مقدار نام
- dsrt
- h5py


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl dsrt-0.0.1:

    pip install dsrt-0.0.1.whl


نصب پکیج tar.gz dsrt-0.0.1:

    pip install dsrt-0.0.1.tar.gz