معرفی شرکت ها


dsql-0.4.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Dead simple RDBMS handling lib
ویژگی مقدار
سیستم عامل -
نام فایل dsql-0.4.1
نام dsql
نسخه کتابخانه 0.4.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده gwn
ایمیل نویسنده egeavunc@gmail.com
آدرس صفحه اصلی https://github.com/gwn/dsql
آدرس اینترنتی https://pypi.org/project/dsql/
مجوز MIT
**Dead simple RDBMS handling library** https://github.com/gwn/dsql Dead simple SQL generation and result handling library. Designed to work with Python DB API 2 compatible database connection objects. Install with:: pip install dsql You can use `dsql` in two ways. First case is SQL statement generation:: >>> from dsql import buildquery >>> buildquery('select', 'people', ['name', 'surname'], where=[{'age >': 30}], orderby='-age', dialect='postgresql') ( 'SELECT "name", "surname" FROM "people" WHERE "age" > %s ORDER BY "age" DESC', [30] ) Second use case is to create a manager object that, in addition to generating your statements, automatically executes them and handles the results for you:: >>> import psycopg2 >>> from psycopg2.extras import DictCursor >>> from dsql import makemanager >>> conn = psycopg2.connect(database='foo', cursor_factory=DictCursor) >>> db = dsql.makemanager(conn, dialect='postgresql') >>> itemiter = db.select('products', where=[{'color =': 'red'}]) >>> itemiter.next() { 'id': 1, 'title': 'Shirt', 'color': 'red' } >>> db.insert('products', [{'title': 'Pants', 'color': 'green'}, >>> {'title': 'Socks', 'color': 'yellow'}]) [2, 3] Note that *it is required* to configure the connection to return DictCursors instead of standard cursors, as in the example above. Check out the reference section below for the documentation of the whole API. **Installation**:: pip install dsql **Reference** Check out:: # Query Builder query, params = dsql.buildquery(operation, tablename, <depends-on-the-operation>, ... dialect='standard') query, params = dsql.buildquery('select', tablename, fieldlist=[], where=[], groupby=[], having=[], orderby=[], limit=0, offset=0, dialect='standard') query, params = dsql.buildquery('insert', tablename, recordlist, dialect='standard') query, params = dsql.buildquery('update', tablename, updates, where=[], orderby=[], limit=0, offset=0, dialect='standard') query, params = dsql.buildquery('delete', tablename, where=[], orderby=[], dialect='standard') query, params = dsql.buildquery('raw', query, params) # Manager db = dsql.makemanager(dbapi2_compatible_connection_object, dialect='standard') itemiter = db.select(tablename, fieldlist=[], where=[], groupby=[], having=[], orderby=[], limit=1, offset=0, commit=True, dry_run=False, response_handler=None) list_of_inserted_ids = db.insert(tablename, recordlist, commit=True, dry_run=False, response_handler=None) number_of_affected_rows = db.update(tablename, updates, where=[], orderby=[], limit=0, offset=0, commit=True, dry_run=False, response_handler=None) number_of_affected_rows = db.delete(tablename, where=[], orderby=[], commit=True, dry_run=False, response_handler=None) mixed = db.raw(query, params, commit=True, dry_run=False, response_handler=None) # return value of this one depends on the type of query. related_connection_object = db.conn Documentation of common parameters: *fieldlist* List of fields, such as `['name', 'age', 'occupation']`. Pass an empty list, or skip altogether, to get all the fields. *where* List of condition groups. Each condition group is a dict of predicate and value pairs, such as: `{'name =': 'John', 'age >': 30}`. Each pair is combined with `AND`, so this example is translated to the template `"name" = %s AND "age" > %s` and values of `['John', 30]`. Condition groups themselves are combined with `OR`, so the following `where` expression:: [{'name =': 'John', 'age >': 30}, {'occupation in': ['engineer', 'artist']}] Translates to:: WHERE ("name" = %s AND age > %s) OR (occupation IN (%s, %s)) with the values of: `['John', 30, 'engineer', 'artist']` All standard comparison operators along with `LIKE`, `NOT LIKE`, `IN` and `NOT IN` are supported. If you need to construct more complicated filters, try raw queries. *groupby* List of group fields, such as `['age', 'occupation']` *having* Same as `where`. *orderby* List of fields to order by. Add the `-` prefix to field names for descending order. Example: `['age', '-net_worth']` *limit* Limit as an integer, such as `50`. *offset* Offset as an integer, such as `200`. *dialect* `standard`, `postgresql` or `mysql`. *commit* Automatically commit the query. If you choose not to commit, you can always get the connection object from the manager object (via `manager.conn`) and make the commit yourself when the time is right. *dry_run* `True` or `False`. If `True`, does not execute the query, but dump it to the standard error for inspecting. *response_handler* By default, the manager object handles the responses for you. It returns an iterator of records for select calls, list of last inserted ids for insert calls, and number of affected rows for others. In the cases you want to handle the response yourself, you can pass your own `response_handler` whose arguments will be the cursor object and the current dialect. Example:: value_of_custom_handler = manager.select(tablename, limit=10, response_handler=custom_handler) **Examples** PosgreSQL with psycopg2:: import psycopg2 import psycopg2.extras import dsql conn = psycopg2.connect(host='localhost', user='root', database='lorem', cursor_factory=psycopg2.extras.DictCursor) db = dsql.makemanager(conn, dialect='postgresql') itemiter = db.select('products', ['id', 'name', 'description']) item = itemiter.next() print item['name'] ... MySQL with MySQLdb:: import MySQLdb import MySQLdb.cursors import dsql conn = MySQLdb.connect(host='localhost', user='root', db='lorem', cursorclass=MySQLdb.cursors.DictCursor) db = dsql.makemanager(conn, dialect='mysql') itemiter = db.select('products', ['id', 'name', 'description'], where=[{'status =': 'in stock'}]) item = itemiter.next() print item['name'] last_insert_ids = db.insert('products', [ { 'name': 'foo', 'description': 'what a product!', } ]) last_insert_ids = db.insert('products', [ { 'name': 'foo', 'description': 'what a product!', } ], commit=False) db.conn.commit() affected_rowcount = db.update('products', {'name': 'lorem ipsum'}, where=[{'id =': 888}]) affected_rowcount = db.delete('products', where=[{'id =': 777}])


نحوه نصب


نصب پکیج whl dsql-0.4.1:

    pip install dsql-0.4.1.whl


نصب پکیج tar.gz dsql-0.4.1:

    pip install dsql-0.4.1.tar.gz