معرفی شرکت ها


dsp-toolkit-2.8.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Functions useful for analyzing digitized signals.
ویژگی مقدار
سیستم عامل -
نام فایل dsp-toolkit-2.8.2
نام dsp-toolkit
نسخه کتابخانه 2.8.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده S. V. Paulauskas
ایمیل نویسنده stanpaulauskas@gmail.com
آدرس صفحه اصلی https://github.com/spaulaus/dsp_toolkit
آدرس اینترنتی https://pypi.org/project/dsp-toolkit/
مجوز Apache License Version 2.0
# Digital Signal Processing Toolkit This code started as a C++ program to perform trapezoidal filtering to a digitized signal from [XIA LLC's Pixie-16 hardware](https://www.xia.com/dgf_pixie-16.html). The original sample code came from a VB program using [IGOR](https://www.wavemetrics.com/) as its base. It fairly well approximates the filter calculations that happen on a Pixie-16 module. These algorithms are mostly focused around XIA's hardware and function, but can be applied to **any** digitized signal. ## Installation `pip install dsp_toolkit` ### Verify installation You can verify the installation by opening up a python console and executing the following ```python from dsp_toolkit.sample_data import sample_traces as st import dsp_toolkit.filtering.filters as ft filter = ft.calculate_trapezoidal_filter(st.plastic_scintillator, 10, 5) print(filter) ``` Your results should be identical to ```python results = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 0.4, 0.5, 0.2, 0.6, 0.7, 0.3, 0.0, 0.0, 0.0, -0.1, -0.3, -0.1, -0.1, -0.1, 0.1, 0.0, -0.1, 0.3, 0.3, 0.2, 0.0, -0.3, -0.1, 0.0, 0.0, 0.1, -0.1, -0.2, 0.2, 0.2, 0.0, -0.2, -0.2, 0.0, 0.1, 0.0, 0.0, -0.2, 0.4, 0.9, 0.8, 0.7, 0.6, 0.5, 0.7, 0.8, 0.6, 6.5, 74.8, 267.0, 574.5, 912.4, 1215.2, 1463.4, 1657.5, 1805.4, 1909.0, 1921.7, 1789.9, 1526.5, 1220.0, 940.1, 703.5, 456.4, 129.2, -278.9, -695.9, -1063.5, -1359.4, -1583.3, -1749.9, -1866.3, -1888.6, -1764.0, -1505.7, -1198.9, -912.5, -676.4, -497.0, -363.7, -266.1, -191.3, -130.7, -85.5, -56.4, -38.8, -28.2, -21.0, -15.7, -10.8, -10.3, -16.8, -23.2, -24.7, -23.0, -18.6, -12.4, -7.0] ``` For more detailed usage checkout the [Demo notebook](https://github.com/spaulaus/dsp_toolkit/blob/master/docs/demo.ipynb). ## Module Descriptions ### filtering Implements a simple trapezoidal filter without any bells and whistles. We also include a simple RC low-pass filter used for conditioning signals. XIA LLC uses [trapezoidal filtering](https://doi.org/10.1109/NSSMIC.2008.4774600) to calculate trigger positions and energies. The functions in this script approximate the Pixie-16 on-board calculations. We have functions to calculate * trigger positions, * signal baseline, * signal energy, * energy sums, * and trigger and energy responses. We've made no attempt to convert bins to time. Users can do this trivially if they know the sampling frequency of their signal. ### sample_data The sample data include both energy spectra, and digitized signals. The signals can be used with the various filtering and fitting functions. The energy spectra can be used with pileup calculations. ### signal_pileup Takes a user provided energy distribution (either binned or raw) and calculates signal pileups based on trapezoidal filter parameters and count rates. We've also provided some macros that can be used with the CERN ROOT program. Those scripts served as the basis for the python functions. ### timing Provides both fitting and constant fraction discrimination (CFD) functions. We implement both a traditional CFD, and a CFD described in XIA's Pixie-16 Manual. We implement a couple of different fitting functions. The `vandle` function is the most tested and used function.


نحوه نصب


نصب پکیج whl dsp-toolkit-2.8.2:

    pip install dsp-toolkit-2.8.2.whl


نصب پکیج tar.gz dsp-toolkit-2.8.2:

    pip install dsp-toolkit-2.8.2.tar.gz