معرفی شرکت ها


dsntnn-0.5.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

PyTorch implementation of DSNT
ویژگی مقدار
سیستم عامل -
نام فایل dsntnn-0.5.3
نام dsntnn
نسخه کتابخانه 0.5.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Aiden Nibali
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/dsntnn/
مجوز Apache Software License 2.0
:warning: **I have helped integrate DSNT into [Kornia](https://github.com/arraiyopensource/kornia) (from v0.1.4). New users are advised to use that implementation instead of this one. Existing users should note that the "normalised" coordinate system differs between the two implementations (see https://github.com/anibali/dsntnn/issues/15).** # PyTorch DSNT This repository contains the official implementation of the differentiable spatial to numerical (DSNT) layer and related operations. ```bash $ pip install dsntnn ``` ## Usage Please refer to the [basic usage guide](examples/basic_usage.md). ## Scripts ### Running examples ```bash $ python3 setup.py examples ``` HTML reports will be saved in the `examples/` directory. Please note that the `dsntnn` package must be installed with `pip install` for the examples to run correctly. ### Building documentation ```bash $ mkdocs build ``` ### Running tests Note: The dsntnn package must be installed before running tests. ```bash $ pytest # Run tests. $ pytest --cov=dsntnn --cov-report=html # Run tests and generate a code coverage report. ``` ## Other implementations * Tensorflow: [ashwhall/dsnt](https://github.com/ashwhall/dsnt) * Be aware that this particular implementation represents coordinates in the (0, 1) range, as opposed to the (-1, 1) range used here and in the paper. If you write your own implementation of DSNT, please let me know so that I can add it to the list. I would also *greatly* appreciate it if you could add the following notice to your implementation's README: > Code in this project implements ideas presented in the research paper > "Numerical Coordinate Regression with Convolutional Neural Networks" by Nibali et al. > If you use it in your own research project, please be sure to cite the > original paper appropriately. ## License and citation (C) 2017 Aiden Nibali This project is open source under the terms of the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0.html). If you use any part of this work in a research project, please cite the following paper: ```bibtex @article{nibali2018numerical, title={Numerical Coordinate Regression with Convolutional Neural Networks}, author={Nibali, Aiden and He, Zhen and Morgan, Stuart and Prendergast, Luke}, journal={arXiv preprint arXiv:1801.07372}, year={2018} } ```


نیازمندی

مقدار نام
>=0.4 torch


نحوه نصب


نصب پکیج whl dsntnn-0.5.3:

    pip install dsntnn-0.5.3.whl


نصب پکیج tar.gz dsntnn-0.5.3:

    pip install dsntnn-0.5.3.tar.gz