معرفی شرکت ها


dsgepy-0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Solve and estimate linearized DSGE models
ویژگی مقدار
سیستم عامل -
نام فایل dsgepy-0.1
نام dsgepy
نسخه کتابخانه 0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gustavo Amarante
ایمیل نویسنده developer@dsgepy.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/dsgepy/
مجوز -
# dsgepy This is a Python library to calibrate, estimate and analyze linearized DSGE models. The interface is inpired by the dynare interface which allows for symbolic declarations of the variables and equations. The implemented bayesian estimation method uses markov chain monte carlo (MCMC) to simulate the posterior distributions of the parameters. This library is an effort to bring the DSGE toolset into the open-source world in a full python implementation, which allows to embrace the advantages of this programming language when working with DSGEs. --- # Installation You can install this development version using: ``` pip install dsgepy ``` ### Kalman Filter Computing the likelihood of models involve using the kalman filter. `pykalman` is available for python, but some adjustments to the original library are needed to use with this library. So **in order for `dsgepy` to work you need the corrected version of `pykalman`, available [here](https://github.com/gusamarante/pykalman). Make sure to clone this version and add it to the interpreter befor using `dsgepy`**. The corrections here correct the way `pykalman` handles masked numpy arrays and deals with ill-estimated covariance matrices. --- # Example A full example on how to use this library with a small New Keynesian model is available in [this Jupyter notebook](https://github.com/gusamarante/pydsge/blob/master/Example/example_snkm.ipynb). The model used in the example is descibred briefly by the following equations: <img src="http://latex.codecogs.com/gif.latex?\tilde{y}_{t}=E_{t}\left(\tilde{y}_{t+1}\right)-\frac{1}{\sigma}\left[\hat{i}_{t}-E_{t}\left(\pi_{t+1}\right)\right]+\psi_{ya}^{n}\left(\rho_{a}-1\right)a_{t}" /> <img src="http://latex.codecogs.com/gif.latex?\pi_{t}=\beta E_{t}\left(\pi_{t+1}\right)+\kappa\tilde{y}_{t}+\sigma_{\pi}\varepsilon_{t}^{\pi}" /> <img src="http://latex.codecogs.com/gif.latex?\hat{i}_{t}=\phi_{\pi}\pi_{t}+\phi_{y}\tilde{y}_{t}+v_{t}" /> <img src="http://latex.codecogs.com/gif.latex?a_{t}=\rho_{a}a_{t-1}+\sigma_{a}\varepsilon_{t}^{a}" /> <img src="http://latex.codecogs.com/gif.latex?v_{t}=\rho_{v}v_{t-1}+\sigma_{v}\varepsilon_{t}^{v}" /> # Model Especification For now, the model equations have to be linearized around its steady-state. Soon, there will be a functionality that allows for non-linearized declaration of the equilibrium conditions. # Model Solution The solution method used is based on the implementation of Christopher A. Sims' `gensys` function. You can find the author's original matlab code [here](https://dge.repec.org/codes/sims/linre3a/). The paper explaining the solution method is [this one](https://dge.repec.org/codes/sims/linre3a/LINRE3A.pdf). # Model Estimation The models are estimated using Bayesian methdos, specifically, by simulating the posterior distribution using MCMC sampling. Simulations are typically long, so there is a functionality that allows you to stop a simulation and continue it later from where it stoped. # Analysis There are functionalities for computing Impulse-Response funcions for both state variables and observed variables. Historical decomposition is also available, but only when the number of exogenous shocks matches the number of observed variables. --- # Drawbacks Since there is symbolic declaration of variables and equations, methdos involving them are slow, so the MCMC methods typically take a long time to run. Although there is room for improvement for the efficiency of these estimation algorithms. --- # Contributing If you would like to contribute to this repository, plese check the [contributing guidelines](https://github.com/gusamarante/pydsge/blob/master/CONTRIBUTING.md) here. A [list of feature suggestions](https://github.com/gusamarante/pydsge/projects) is available on the projects page of this repository. --- # More Information and Help If you need more information and help, specially about contributing, you can contact Gustavo Amarante on developer@dsgepy.com


نیازمندی

مقدار نام
- pandas
- scipy
- tqdm
- sympy
- numpy
- matplotlib


نحوه نصب


نصب پکیج whl dsgepy-0.1:

    pip install dsgepy-0.1.whl


نصب پکیج tar.gz dsgepy-0.1:

    pip install dsgepy-0.1.tar.gz