معرفی شرکت ها


ds2sim-0.5.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fun with Machine Learning and Space Ships
ویژگی مقدار
سیستم عامل -
نام فایل ds2sim-0.5.0
نام ds2sim
نسخه کتابخانه 0.5.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Oliver Nagy
ایمیل نویسنده olitheolix@gmail.com
آدرس صفحه اصلی https://github.com/olitheolix/ds2sim
آدرس اینترنتی https://pypi.org/project/ds2sim/
مجوز Apache Software License 2.0
# DS2Sim A simple Space Sim to experiment with machine learning. It wraps [Horde3D](http://www.horde3d.org/) with Cython and uses it to render scenes like these. <img src="docs/img/example_scene.jpg" width="400"> You can use it to create your own training data, but it is easier to use the data set from the [DS2Data](https://github.com/olitheolix/ds2data) project. Not only does that project have a representative training set of the relevant objects, it also comes with a pre-rendered flight path to test your model. Once you have your model you can plug it into the viewer application (see [View The Space Simulation](#View-The-Space-Simulation) section for details), and fly through the scene while it identifies the objects. You may also replace the manual controls with another AI to make it fly autonomously. ## Installation First, this will only work with an NVidia GPU, because the project uses [headless rendering](https://devblogs.nvidia.com/parallelforall/egl-eye-opengl-visualization-without-x-server/). If you do not have an NVidia card, you may still train and test ML models with the data from the [DS2Data](https://github.com/olitheolix/ds2data) set. Next, since this is a Cython wrapper for Horde3D, you will need - you guessed it - Cython and Horde3D. To compile and install Horde3D, activate the virtual environment of your choice, install Cython, and then clone/compile/install Horde3D like so: ```bash git clone https://github.com/olitheolix/Horde3D mkdir -p Horde3D/build cd Horde3D/build git checkout ds2sim cmake .. -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=`python -c 'import sys; print(sys.prefix)'` make install ``` Afterwards, install *DS2Sim* via PIP: ```bash pip install ds2sim ``` ## View the Space Simulation This consists of two parts: a web server to supply the rendered images, and a Qt application to display them. Start the web server and load the default scene: ```bash ds2server --default-scene ``` Then put the following code into a file. Note that almost the entire file is boilerplate for Qt. ```python import sys import ds2sim.viewer import numpy as np import PyQt5.QtGui as QtGui import PyQt5.QtCore as QtCore import PyQt5.QtWidgets as QtWidgets # For convenience. QPen, QColor, QRectF = QtGui.QPen, QtGui.QColor, QtCore.QRectF DS2Text = ds2sim.viewer.DS2Text class MyClassifier(ds2sim.viewer.ClassifierCamera): def classifyImage(self, img): pass # Qt boilerplate to start the application. app = QtWidgets.QApplication(sys.argv) widget = MyClassifier('Camera', host='127.0.0.1', port=9095) widget.show() app.exec_() ``` The only part here that is not boilerplate is `MyClassifier`, and even that does nothing right now. When you run this program you should see the scene. Click in it, and use the ESDF keys, as well as the mouse, to fly through the scene. ## Plug Your ML Model Into The Simulation The real fun is, of course, to use ML to find and identify all the cubes while you fly around. To do so, overload the `classifyImage` method in the previous demo like so: ```python # For convenience. QPen, QColor, QRectF = QtGui.QPen, QtGui.QColor, QtCore.QRectF DS2Text = ds2server.viewer.DS2Text class MyClassifier(ds2sim.viewer.ClassifierCamera): def classifyImage(self, img): # `img` is always a <height, width, 3> NumPy image. assert img.dtype == np.uint8 # Pass the image to your ML model. # myAwesomeClassifier(img) # Define a red bounding box. x, y, width, height = 0.3, 0.4, 0.3, 0.3 bbox = [QPen(QColor(255, 0, 0)), QRectF(x, y, width, height)] # Define a green text label. x, y = 0.3, 0.4 text = [QPen(QColor(100, 200, 0)), DS2Text(x, y, 'Found Something')] # Install the overlays. self.setMLOverlays([bbox, text]) ``` The `classifyImage` method will be called for each frame. It always receives one RGB image as a NumPy array. Pass that image to your classifier to identify the objects in the scene. When you have found out which objects are where, you can add overlays to highlight them. Every overlay is a 2-tuple: a `QPen` to define the colour, and a primitive to draw. Currently, `QRect` and `DS2Textures` are the only supported primitives. Pass all overlays to `setMLOverlays` and it will show up in the scene. The example code from above will produce an output like this. Single Frame | Spaceflight :-------------------------:|:-------------------------: <img src="docs/img/viewer_box.jpg" width="400">|<img src="docs/img/animated.gif" width="400">


نحوه نصب


نصب پکیج whl ds2sim-0.5.0:

    pip install ds2sim-0.5.0.whl


نصب پکیج tar.gz ds2sim-0.5.0:

    pip install ds2sim-0.5.0.tar.gz