معرفی شرکت ها


ds-planner-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package for zap platform
ویژگی مقدار
سیستم عامل -
نام فایل ds-planner-1.0.0
نام ds-planner
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ritika Kumari
ایمیل نویسنده ritika.kumari@glance.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/ds-planner/
مجوز -
# glancefeed-reco-spaces-zappcontent-personalization ## Overview This is a repository with the code for building pipelines for Zapp Content Personalization. Currently, the pipeline for BreakingNews Zapp is built using Spark Structured Streaming. In general, any Zapp pipeline should consist the following components: 1. Consuming data from Kafka 2. A High Pass Filter to filter out the data that is not relevant to the Zapp (Static filters) 3. A Low Pass Filter to filter out the data that is not relevant to the Zapp (Dynamic filters) 4. A ranking algorithm to rank the data based on the Zapp's requirements 5. Writing the output to Kafka ### POCs - [x] Embedded Model in the Pipeline - [x] RPC Call from the Pipeline - [ ] Message Queue based ML Inference Server ## Preparing the pipeline for a new Zapp 1. Use this repo as the template 2. In the config.ini file __update the following fields__: ```bash [kafka-config] group.id = <consumer-group-id> # Consumer group ID should in the format of consumer-glance-ds* zapp.widget.id = <zapp-widget-id> # Zapp Widget ID to be deployed into [gcp-config] checkpoint.path = <gcs-checkpoint-path> # for checkpointing the streaming data checkpoint.analytics.path = <gcs-analytics-checkpoint-path> # for checkpointing the streaming data - streaming [env-config] env = <DEV/STAGING/PROD> ``` ## Running the pipeline ### 1. Environment setup #### Dev environment In this environment, output will be displayed on the console and not written to the output topic. 1. Set the env config in config.ini to DEV and project number to the project number of the non-prod project 2. Create a GCP DataProc cluster on your non-prod project with the spark properties as follows: ```--properties spark:spark.jars.packages=org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.2 ``` #### Staging environment In this environment, output will be written to the staging output topic. 1. Set the env config in config.ini to STAGING and project number to the project number of the non-prod project 2. Create a GCP DataProc cluster on your non-prod project with the spark properties as follows: ```--properties spark:spark.jars.packages=org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.2 ``` #### Production environment TBD ### 2. Run the pipeline The pipeline can be run in two ways: 1. Running the pipeline as a spark job 2. Running the pipeline as a serverless streaming pipeline #### 1. Running Zapp Pipeline as a spark job - First make necessary config changes in config.ini and prepare your script item_fan_out.py ```bash gsutil cp -r src gs://pipelines-staging/spark_job/item_fan_out ``` - Next, run the pipeline as a spark job ```bash gcloud dataproc jobs submit pyspark --cluster <cluster-name> --region <region> --properties spark:spark.jars.packages=org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.2 gs://pipelines-staging/spark_job/item_fan_out/item_fan_out.py --files gs://pipelines-staging/spark_job/item_fan_out/config.ini,gs://pipelines-staging/spark_job/item_fan_out/utils.py ``` #### 2. Running Zapp Pipeline as a serverless steaming pipeline - First prepare your script `streaming_zap_pipeline.py` ```bash gsutil cp src/streaming_zap_pipeline.py gs://pipelines-staging/serverless/streaming_zap_pipeline.py ``` - Next trigger a serverless job Open notebooks/launch_pipeline_poc.ipynb ## References 1. [CMS <> DS Contract](https://glanceinmobi.atlassian.net/wiki/spaces/SpV2/pages/790396980/Spaces+V2+DS+Proto+Schema) 2. [DS <> Planner-Ingestion Contract](https://github.com/inmobi-glance/glancefeed-reco-spaces-zappcontent-personalisation/blob/develop/schemas/spaces_zapp_publish.proto) 4. Creating a secret in Google Secret Manager - https://github.tools.inmobi.com/shivjeet-bhosale/secret_manager/blob/main/generate_secrets.ipynb 5. Kafka topic creation steps - Go to https://confluent.cloud/home - For Dev/staging, create a topic in CONFLUENT-KAFKA-NON-PROD-SG-001 cluster under Glance-Staging environment - Topic name should be in the format of glance-ds-non-prod*topic-name*


نیازمندی

مقدار نام
- fastapi
- gunicorn
- pydantic
- starlette
- tenacity
- uvicorn[standard]
- asyncpg
- alembic
- sqlalchemy
- pyyaml
- python-jose[cryptography]
- cachetools
- aiohttp[speedups]
- email-validator
==2.10.2 google-api-core
==2.14.1 google-auth
==1.19.0 google-cloud-aiplatform
==2.3.2 google-cloud-core
==1.5.0 google-crc32c
==1.57.0 googleapis-common-protos
==1.44.0 grpcio
==5.0.1 google-cloud-dataproc
==2.8.0 google-cloud-secret-manager


نحوه نصب


نصب پکیج whl ds-planner-1.0.0:

    pip install ds-planner-1.0.0.whl


نصب پکیج tar.gz ds-planner-1.0.0:

    pip install ds-planner-1.0.0.tar.gz